Well-behaved measures and weak covering for derived models

Trevor Wilson

Fields Institute

Toronto Set Theory Seminar Fields Institute December 14, 2012 Define a closure operation on $\wp(\mathbb{R})$:

Definition (Martin)

Let S be a collection of sets of reals. Then \overline{S} is the set of $A \subset \mathbb{R}$ such that for every countable $\mathcal{I} \subset \mathbb{R}$ there is a set $A' \in S$ with $A \cap \mathcal{I} = A' \cap \mathcal{I}$.

We say A is "countably approximated by sets in S."

- ▶ $S \subseteq \overline{S}$
- $ightharpoonup \overline{S} = \overline{\overline{S}}$
- $\blacktriangleright \ S_1 \subset S_2 \implies \overline{S_1} \subset \overline{S_2}$

Main example of a "bar-closed" pointclass:

Fact (AD)

 $\overline{\text{OD}} = \text{OD}$, where OD is the collection of ordinal-definable sets of reals.

Meaning: "countably approximated by OD sets" implies OD.

Proof.

Well-order OD by A < B if $A_d <_{\text{OD}} B_d$ for a cone of Turing degrees d where

- $\mathcal{I}_d = \{x : x \leq_\mathsf{T} d\}$
- ▶ $A_d \in OD$ is $<_{OD}$ -least with $A \cap \mathcal{I}_d = A_d \cap \mathcal{I}_d$
- ▶ $B_d \in \mathsf{OD}$ is $<_{\mathsf{OD}}$ -least with $B \cap \mathcal{I}_d = B_d \cap \mathcal{I}_d$

Other examples of "bar-closed" pointclasses are given by local ordinal-definability or relativized ordinal-definability.

Example (AD)

$$\bar{S} = S$$
 if

▶ *S* consists of $A \subset \mathbb{R}$ of the form

$$\{x \in \mathbb{R} : L[x] \models \varphi[\alpha, x]\}$$

for ordinals α , or

▶ *S* consists of $A \subset \mathbb{R}$ that are OD from a parameter π .

Assume AD and let $\kappa < \Theta$.

Take a surjection $\pi: \mathbb{R} \to \wp(\kappa)$ (by coding lemma.)

Definition (Code set of a measure)

For a countably complete measure μ on κ

$$\mathsf{Code}_{\pi}(\mu) = \{x \in \mathbb{R} : \pi(x) \in \mu\}.$$

Given countable $\mathcal{I} \subset \mathbb{R}$, approximate by principal measures:

$$(\exists \alpha < \kappa) (\forall x \in \mathcal{I}) (\pi(x) \in \mu \iff \alpha \in \pi(x))$$

So
$$\mathsf{Code}_\pi(\mu) \in \overline{\mathsf{OD}_\pi}$$

Given surjection $\pi: \mathbb{R} \to \wp(\kappa)$ and c.c. measure μ on κ , recall $\mathsf{Code}_{\pi}(\mu)$ is in $\overline{\mathsf{OD}_{\pi}}$.

Fact (AD)

- ▶ $\overline{\mathsf{OD}_{\pi}} = \mathsf{OD}_{\pi}$.
- ▶ $\mathsf{Code}_{\pi}(\mu) \in \mathsf{OD}_{\pi}$.

So far we are just approaching Kunen's theorem in a roundabout way:

Theorem (Kunen, AD)

 $\mu \in \mathsf{OD}$.

Now don't assume AD, but let M be a model of AD with $\mathbb{R} \subset M$. Following Kechris–Woodin, we prove:

Key Lemma (W.)

Every $A \in OD^M$ is determined.

Sketch of proof

Suppose $A \in OD^M$ is not determined.

Given $t \in \mathbb{R}$ take Skolem hull to get countable Turing ideal $\mathcal{I} \ni t$ such that the restricted game $G_A \upharpoonright \mathcal{I}$ is not determined. (Every strategy with a code in \mathcal{I} loses to some play in \mathcal{I} .) Let A_t be $<_{\mathsf{OD}^M}$ -least A' such that $G_{A'} \upharpoonright \mathcal{I}$ is not determined.

Working in M, piece together the restricted games $G_{A_t} \upharpoonright \mathcal{I}$ into an undetermined game, contradicting AD in M.

Corollary

If M is a model of AD with $\mathbb{R} \subset M$, then

$$\overline{\mathsf{OD}^M} \subseteq \mathsf{OD}_M$$

(Superscript means OD in, and subscript means OD from.)

Proof.

Well-order $\overline{\text{OD}^M}$ by A < B if $A_d <_{\text{OD}^M} B_d$ for a cone of Turing degrees d.

Let $A_d \in \mathsf{OD}^M$ be $<_{\mathsf{OD}^M}$ -least with $A \cap \mathcal{I}_d = A_d \cap \mathcal{I}_d$ and similarly for B_d .

Let M be a model of AD with $\mathbb{R} \subset M$.

Let $\kappa < \Theta^M$ and take a surjection $\pi : \mathbb{R} \to \wp(\kappa)^M$ in M.

Let μ be a c.c. measure on the σ -algebra $\wp(\kappa)^{M}$.

Corollary (Definability of measures)

 $\mathsf{Code}_\pi(\mu) \in \mathsf{OD}_{M,\pi}$

Kunen's proof generalizes to give:

Corollary (Definability of measures)

 $\mu \in \mathsf{OD}_{M}$

Corollary (Number of measures)

Let M be a model of AD with $\mathbb{R} \subset M$. Let $\kappa < \Theta^M$, and take a surjection $\pi : \mathbb{R} \to \wp(\kappa)^M$ in M.

- ▶ Wadge determinacy: for countably complete measures μ, ν on $\wp(\kappa)^M$ there is a continuous function f such that $\operatorname{Code}_{\pi}(\mu) = f^{-1}[\operatorname{Code}_{\pi}(\nu)]$ or $\operatorname{Code}_{\pi}(\nu) = \mathbb{R} \setminus f^{-1}[\operatorname{Code}_{\pi}(\mu)]$.
- ▶ So there are at most \mathfrak{c}^+ many countably complete measures on $\wp(\kappa)^M$, even if $2^{\mathfrak{c}} > \mathfrak{c}^+$.

Let M be a model of AD with $\mathbb{R} \subset M$. Let $\kappa < \Theta^M$, and take a surjection $\pi : \mathbb{R} \to \wp(\kappa)^M$ in M.

Corollary

It is consistent to have $\leq \mathfrak{c}$ many countably complete measures on $\wp(\kappa)^M$.

Proof.

We can collapse set of measures without adding new ones: measures are OD_M and $\mathsf{Col}(\mathfrak{c},\mathfrak{c}^+)$ is homogeneous.

It is also consistent to have \mathfrak{c}^+ many countably complete measures on $\wp(\kappa)^M$: say $M=L(\mathbb{R})$, $\kappa=(\check{\wp}_1^2)^{L(\mathbb{R})}$, and V is a generic extension of $L(\mathbb{R})$ by $\operatorname{Col}(\omega_1,\mathbb{R})$ or by \mathbb{P}_{\max} .

Definition

Let κ be an ordinal.

- ▶ $A \subset \mathbb{R}$ is κ -Suslin if A = p[T] for some tree T on $\omega \times \kappa$.
 - ▶ [T] is the set of branches of T
 - ▶ p[T] is its projection $\{x \in \omega^{\omega} : \exists f \in \kappa^{\omega}(x, f) \in [T]\}.$
- ▶ $A \subset \mathbb{R}$ is Suslin if it is κ -Suslin for some κ .
- ▶ $A \subset \mathbb{R}$ is co-Suslin if its complement is Suslin.

AC implies that every set of reals is c-Suslin.

Example

The ω -Suslin sets are the analytic $(\sum_{i=1}^{1})$ sets.

Example

Under AD:

- ▶ The ω_1 -Suslin sets are the \sum_{2}^{1} sets
- ▶ In $L(\mathbb{R})$, the Suslin sets are the $\sum_{i=1}^{2}$ sets

The theory "AD + every set of reals is Suslin" has higher consistency strength than AD.

Definition

T a tree on $\omega \times \kappa$, δ an uncountable cardinal.

▶ T is δ -weakly homogeneous if there is a countable set σ of δ -complete measures on $\kappa^{<\omega}$ such that for every $x \in p[T]$ there is a countably complete tower of measures $\{\mu_0, \mu_1, \ldots\} \subset \sigma$ concentrating on the tree

$$T_{x} = \{ s \in \kappa^{n} : (x \upharpoonright n, s) \in T \}$$

▶ T is $<\!\delta$ -absolutely complemented if there is a tree \tilde{T} such that $V^{\mathsf{Col}(\omega,\alpha)} \models p[T] = \omega^{\omega} \setminus p[\tilde{T}]$ for all $\alpha < \delta$

Theorem (Martin-Solovay)

If a tree T on $\omega \times \kappa$ is δ -weakly homogeneous then it is $<\!\delta$ -absolutely complemented.

▶ In particular, if T is ω_1 -weakly homogeneous then p[T] is co-Suslin

Fact

If M is an inner model and $\mathbb{R} \cup \operatorname{Ord} \cup \{T\} \subset M$, then countably complete partial measures on $\wp(\kappa^{<\omega})^M$ are enough to show that p[T] is co-Suslin.

To get weak homogeneity systems:

Theorem (Woodin)

If T is a tree on $\omega \times \delta$ and δ is $2^{2^{\delta}}$ -supercompact, then T is δ -weakly homogeneous in $V^{\operatorname{Col}(\omega,\alpha)}$ for some $\alpha < \delta$.

▶ In particular, p[T] is co-Suslin in the symmetric extension $V(\mathbb{R}^*)$ where $\mathbb{R}^* = \mathbb{R} \cap V^{\mathsf{Col}(\omega, <\delta)}$

If $j:V o \mathsf{Ult}$ witnesses $2^{2^\delta}\text{-supercompactness}$ of δ then

$$\sigma = \{j(\mu) : \mu \text{ is a } \delta\text{-complete measure on } \delta^{<\omega}\}$$

witnesses weak homogeneity of j(T) in Ult when collapsed.

What about AD?

Definition

For a *V*-generic filter $G \subset Col(\omega, <\delta)$:

- ▶ \mathbb{R}_{G}^{*} is the set of reals in $V[G \upharpoonright \alpha]$ for some $\alpha < \delta$
- ▶ $\operatorname{\mathsf{Hom}}^*_{\mathcal{G}}$ is the set of $p[T] \cap \mathbb{R}^*_{\mathcal{G}}$ for $<\delta$ -absolutely complementing trees T in $V[\mathcal{G} \upharpoonright \alpha]$ for some $\alpha < \delta$

 $\mathsf{Hom}_{\mathsf{G}}^*$ consists of all Suslin, co-Suslin sets of reals in $V(\mathbb{R}_{\mathsf{G}}^*)$.

Theorem (Woodin)

If δ is a limit of Woodin cardinals then "the" derived model $L(\mathbb{R}^*, \mathsf{Hom}^*)$ at δ satisfies AD^+ .

What we need to know about AD+:

Fact

The following theories are equivalent:

- ► AD⁺ + "every Suslin set of reals is co-Suslin"
- ► AD + "every set of reals is Suslin"

Corollary

If δ is $2^{2^{\delta}}$ -supercompact, then the derived model $L(\mathbb{R}^*, \mathsf{Hom}^*)$ at δ satisfies AD + "every set of reals is Suslin."

Idea

Weaken hypothesis from " δ is $2^{2^{\delta}}$ -supercompact" to " δ is weakly compact"

- ▶ To get AD, also assume δ is a limit of Woodins
- ▶ Build weak homogeneity systems with partial measures on $\wp(\kappa^{<\omega})^M$ where M is the derived model at δ
- These measures are "well-behaved"

Theorem (W.)

Suppose δ is a weakly compact limit of Woodin cardinals and $(\delta^+)^{\text{HOD}} < \delta^+.$

Then the derived model $L(\mathbb{R}^*, \operatorname{Hom}^*)$ at δ satisfies AD + "every set of reals is Suslin."

Remark

- ► Consistency strength of hypothesis with $(\delta^+)^{HOD} = \delta^+$ is much weaker than "AD + every set of reals is Suslin"
- Consistency strength lower bound for the hypothesis follows from "Stacking mice" by a different method
- The hypothesis can be forced from a supercompact

Sketch of proof.

 δ a weakly compact limit of Woodins with $(\delta^+)^{HOD} < \delta^+$. $M = L(\mathbb{R}^*, Hom^*)$ is DM from generic $G \subset Col(\omega, <\delta)$. $M \models AD^+$, so we show in M every Suslin set is co-Suslin:

- ▶ Take a tree $T \in M$ on $\omega \times \kappa$ where $\kappa < \Theta^M$
- $\delta = \mathfrak{c}^{V[G]}$ and $(\delta^+)^V = (\mathfrak{c}^+)^{V[G]}$
- ▶ Using ordinal definability of measures and $(\delta^+)^{HOD} < \delta^+$, show that there are $\leq \delta$ many measures on $\wp(\kappa^{<\omega})^M$
- ▶ Take $j: N \rightarrow N'$ witnessing weak compactness
- ▶ Extend to $j^*: N[G] \to N'[H]$ where $H \subset \mathsf{Col}(\omega, < j(\delta))$
- ▶ $\{j^*(\mu) : \mu \text{ is a c.c. measure on } \wp(\kappa^{<\omega})^M\} \in N'[H]$
- ▶ Then use Woodin's argument

An analogy with covering for *L*:

Theorem (Kunen)

If δ is weakly compact and $(\delta^+)^L < \delta^+$, then 0^{\sharp} exists.

Consider also:

Theorem (Jensen)

If δ is a singular cardinal and $(\delta^+)^L < \delta^+$, then 0^{\sharp} exists.

Question

If δ is a singular limit of Woodin cardinals, and $(\delta^+)^{HOD} < \delta^+$, does the derived model satisfy "every set of reals is Suslin"?