Absolutely complementing trees and generic absoluteness

Trevor Wilson

University of California, Irvine

AMS Sectional Meeting
University of Louisville
October 5, 2013
Definition
For a tree T on $\omega \times \text{Ord}$, let $[T] \subset \omega^\omega \times \text{Ord}^\omega$ be the class of branches of T and let $p[T] \subset \omega^\omega$ be its projection:

$$x \in p[T] \iff \exists f \in \text{Ord}^\omega (x, f) \in [T].$$

For every real $x \in \omega^\omega$ the statement “$x \in p[T]$” is generically absolute, meaning that its truth is unchanged by forcing.

Theorem (Shoenfield)
If $\varphi(v)$ is a Σ^1_2 formula then there is a tree T on $\omega \times \text{Ord}$ such that in every generic extension,

$$p[T] = \{x \in \omega^\omega : \varphi[x]\}.$$

Therefore Σ^1_2 statements are generically absolute.
Definition

- A $<\lambda$-generic extension is a generic extension by a poset of cardinality less than λ.
- A tree T is λ-absolutely complemented if there is \tilde{T} such that in every $<\lambda$-generic extension $p[\tilde{T}] = \omega^\omega \setminus p[T]$.

Definition (Feng–Magidor–Woodin)

A set of reals A is λ-universally Baire1 if $A = p[T]$ for some λ-absolutely complemented tree T.

A is universally Baire if it is λ-universally Baire for all λ.

Remark

Universal Baire property implies many regularity properties.

1Called $<\lambda$-universally Baire in the original notation.
Theorem (Feng–Magidor–Woodin)

The following statements are equivalent:

1. One-step Σ^1_3 generic absoluteness holds

2. Every Δ^1_2 set of reals is universally Baire

Moreover,

- (1) and (2) can be forced from a Σ_2-reflecting cardinal. (This is between “inaccessible” and “Mahlo.”)

- (1) and (2) imply that ω_1^V is Σ_2-reflecting in L.
Theorem (Feng–Magidor–Woodin)

The following statements are equivalent:

1. Two-step Σ^1_3 generic absoluteness (in every generic extension, one-step Σ^1_3 generic absoluteness holds)
2. In every generic extension, every Δ^1_2 set of reals is universally Baire
3. Every Σ^1_2 set of reals is universally Baire

Theorem (Woodin \Rightarrow, Martin–Solovay \Leftarrow)

The following statements are equivalent:

- Two-step Σ^1_3 generic absoluteness
- Every set has a sharp
Next we consider an similar situation “higher up” in terms of large cardinals and descriptive set theory.

- Let λ be a limit of Woodin cardinals.
- Let uB_λ be the pointclass of λ-universally Baire sets.

Analogy:

\[
\begin{align*}
\Sigma_2^1 & \sim (\Sigma_1^2)^{uB_\lambda} \\
\Sigma_3^1 & \sim \exists^R (\Pi_1^2)^{uB_\lambda}
\end{align*}
\]
Definition
A statement about a real \(x\) is \(\left(\Sigma^2_1\right)^{uB\lambda}\) if for some formula \(\varphi(\nu)\) it has the form

\[
\exists B \in uB\lambda (HC; \in, B) \models \varphi[x]
\]

(E.g. “\(x\) is in a mouse with a \(uB\lambda\) iteration strategy.”)

Theorem (Woodin)
If \(\lambda\) is a limit of Woodin cardinals and \(\varphi(\nu)\) is a formula, then there is a tree \(T\) such that in every \(<\lambda\)-generic extension,

\[
p[T] = \{x \in \omega^\omega : \exists B \in uB\lambda (HC; \in, B) \models \varphi[x]\}.
\]

Therefore \(\left(\Sigma^2_1\right)^{uB\lambda}\) statements are generically absolute below \(\lambda\).
Definition
A statement is $\exists^R(\Pi^2_1)^{uB_\lambda}$ if for some formula $\varphi(\nu)$ it has the form
\[\exists x \in \omega^\omega \forall B \in uB_\lambda \,(HC; \in, B) \models \varphi[x]. \]
(E.g. “some real is not in any mouse with a uB_λ strategy.”)

Remark
Generic absoluteness for $\exists^R(\Pi^2_1)^{uB_\lambda}$ can fail even if λ is a limit of Woodin cardinals, and more:

- It fails for the currently studied canonical models.
- It is not known to follow from any large cardinal hypothesis.
Proposition

For a limit \(\lambda \) of Woodin cardinals, the following statements are equivalent:

1. One-step \(\exists^R (\Pi^2_1)^{uB}\lambda \) generic absoluteness below \(\lambda \)

2. Every \((\Delta^2_1)^{uB}\lambda \) set of reals is \(\lambda \)-universally Baire

Moreover, (1) and (2) can be forced from a cardinal that is \(\Sigma^2_2 \)-reflecting up to a limit of Woodins.

(This is between an inaccessible limit of Woodins and a Mahlo limit of Woodins.)

Question 1

Do (1) and (2) imply that \(\omega^V_1 \) is \(\Sigma^2_2 \)-reflecting up to a limit of Woodins in some inner model?
Proposition
For a limit λ of Woodin cardinals, the following statements are equivalent:

1. Two-step $\exists^R (\Pi^2_1)^{uB_\lambda}$ generic absoluteness below λ

2. In every $<\lambda$-generic extension, every $(\Delta^2_1)^{uB_\lambda}$ set of reals is λ-universally Baire

Moreover, (1) and (2) follow from

3. Every $(\Sigma^2_1)^{uB_\lambda}$ set of reals is λ-universally Baire.

Question 2
Are (1), (2), and (3) all equivalent, that is, does (1) \implies (3)?
We will give a partial “yes” answer to Question 2.

Remark

- Woodin’s proof that two-step Σ^1_3 generic absoluteness implies “Σ^1_2 sets are universally Baire” uses Jensen’s covering lemma to get sharps as an intermediate step.

- To attempt a proof that two-step $\exists^R(\Pi^2_1)^{uB_\lambda}$ generic absoluteness below λ implies “$(\Sigma^2_1)^{uB_\lambda}$ sets are λ-universally Baire” we need a higher covering lemma.

- Our “covering lemma” will bypass the inner model theory step and directly construct a λ-absolute complement for the tree \mathcal{T} for $(\Sigma^2_1)^{uB_\lambda}$.
Lemma

Let λ be a measurable cardinal with a normal measure μ. Let T be a tree on $\omega \times \gamma$ for some ordinal γ. Assume that for μ-almost every $\alpha < \lambda$ we have

$$|\mathcal{P}(V_\alpha) \cap L(T, V_\alpha)| = \alpha.$$

Then in some $<\lambda$-generic extension, T is λ-absolutely complemented.

Remark

In our application, T will be the tree for $(\Sigma^2_1)^{uB_\lambda}$ and the “failure of covering” will come from $\exists^\mathbb{R}(\Pi^2_1)^{uB_\lambda}$ generic absoluteness applied to “$L[T, x] \cap \mathbb{R}$ is countable” for a generic real x coding V_α.
A partial answer to Question 2:

Theorem
Let λ be a measurable cardinal that is a limit of Woodin cardinals. Assume two-step $\exists^R (\Pi^2_1)^uB_\lambda$ generic absoluteness below λ. Then in some $<\lambda$-generic extension, every $(\Sigma^2_1)^uB_\lambda$ set is λ-universally Baire.

Question 2a
Can we do without measurability of λ?

Question 2b
Can we get every $(\Sigma^2_1)^uB_\lambda$ set λ-universally Baire in V?