Optimal generic absoluteness results from strong cardinals

Trevor Wilson

University of California, Irvine

Spring 2014 MAMLS
Miami University
April 27, 2014
Definition
A statement φ is **generically absolute** if its truth is unchanged by forcing:

$$V \models \varphi \iff V[g] \models \varphi$$

for every generic extension $V[g]$.

Example
For a tree T of height $\leq \omega$ the statement “T is ill-founded (has an infinite branch)” is generically absolute.

Many generic absoluteness results can be proved via continuous reductions to ill-foundedness of trees.
A brief introduction to trees in descriptive set theory:

- Let T be a function from $\omega^{<\omega}$ to trees of height $<\omega$ such that, if s' extends s, then $T(s')$ end-extends $T(s)$.
- Then T extends to a continuous function from Baire space ω^ω to the space of trees of height $\leq \omega$:

$$T(x) = \bigcup_{n<\omega} T(x \upharpoonright n).$$

- We will abuse notation by calling T itself a tree. An “infinite branch of T” consists of a real $x \in \omega^\omega$ in the first coordinate and an infinite branch of $T(x)$ in the second coordinate.
Definition
We say that a set of reals $A \subset \omega^\omega$ has a tree representation if there is a tree T (equivalently, a tree-valued continuous function T) such that for every real $x \in \omega^\omega$,

$$x \in A \iff T(x) \text{ is ill-founded.}$$

Remark
Every set of reals A has a trivial tree representation where the nodes are constant sequences of elements of A. These are not useful.
A non-trivial kind of tree representation:

Definition
Trees T and \tilde{T} are α-absolutely complementing if, for every real x in every generic extension by a forcing poset of size less than α,

$$T(x) \text{ is ill-founded } \iff \tilde{T}(x) \text{ is well-founded.}$$

Definition
A set of reals A is α-universally Baire if it is represented by an α-absolutely complemented tree.
Definition
Let $\varphi(x)$ be a formula. A tree representation of φ for posets of size less than α is a tree T such that, in any generic extension by a poset of size less than α, the tree T represents the set of reals $\{x \in \omega^\omega : \varphi(x)\}$.

Remark
If $\varphi(x, y)$ has such a representation (generalized to two variables) then so does the formula $\exists y \in \omega^\omega \varphi(x, y)$:

$$\exists y \in \omega^\omega \varphi(x, y) \iff \exists y \ T(x, y) \text{ is ill-founded} \iff T(x) \text{ is ill-founded}.$$
The following theorems are stated in a slightly unusual way to fit with the “generic absoluteness” theme of the talk.¹

Theorem (Mostowski)

Σ^1_1 formulas have tree representations for posets of any size. Therefore Σ^1_1 statements are generically absolute.

Theorem (Shoenfield)

Π^1_1 formulas (and hence Σ^1_2 formulas) have tree representations for posets of any size. Therefore Σ^1_2 statements are generically absolute. The proof constructs absolute complements of trees for Σ^1_1 formulas.

¹Note added April 28, 2014: I have been informed that the original proofs of these absoluteness theorems were not phrased in terms of trees.
For a pointclass (take Σ^1_3 for example) we consider two kinds of generic absoluteness.

Definition

- **One-step generic absoluteness** for Σ^1_3 says for every Σ^1_3 formula $\varphi(v)$, every real x, and every generic extension $V[g]$,

 $$V \models \varphi[x] \iff V[g] \models \varphi[x].$$

- **Two-step generic absoluteness** for Σ^1_3 says that one-step generic absoluteness for Σ^1_3 holds in every generic extension.

Remark

Upward absoluteness ("\implies") is automatic by Shoenfield.
Theorem (Martin–Solovay)

Let κ be a measurable cardinal. Then Π^1_2 formulas (and hence Σ^1_3 formulas) have tree representations for posets of size less than κ. Therefore two-step Σ^1_3 generic absoluteness holds for posets of size less than κ.

Theorem

Assume that every set has a sharp. Then Π^1_2 (and Σ^1_3) formulas have tree representations for posets of any size. Therefore two-step Σ^1_3 generic absoluteness holds. The proof constructs absolute complements of trees for Σ^1_2 formulas.
The converse statement also holds:

Theorem (Woodin)

If two-step Σ^1_3 generic absoluteness holds, then every set has a sharp.

Sketch of proof

- If $0^#$ does not exist then $\lambda^{+L} = \lambda^+$ where λ is any singular strong limit cardinal. (The case of $A^#$ is similar.)
- $L|\lambda^{+L}$ is $\Sigma^1_2(x)$ in the codes where the real $x \in V^{Col(\omega,\lambda)}$ codes $L|\lambda$, so the statement $\lambda^{+L} = \lambda^+$ is $\Pi^1_3(x)$. But it is not generically absolute for $Col(\omega, \lambda^+)$, a contradiction.
Theorem (Woodin)
If δ is a strong cardinal, then two-step Σ^1_4 generic absoluteness holds after forcing with $\text{Col}(\omega, 2^{2\delta})$.

Lemma (Woodin)
If δ is α-strong as witnessed by $j : V \rightarrow M$, T is a tree, and $|V_\alpha| = \alpha$, then after forcing with $\text{Col}(\omega, 2^{2\delta})$, there is an α-absolute complement \tilde{T} for $j(T)$.

\triangleright Given a Σ^1_3 formula $\varphi(x, y)$, let T be a tree representation of φ for posets of size less than κ.
\triangleright Then $j(T)$ represents φ for posets of size less than α.
\triangleright So \tilde{T} is a tree representation of the Π^1_3 formula $\neg\varphi(x, y)$, or equivalently of the Σ^1_4 formula $\exists y \in \omega \omega \neg\varphi(x, y)$, for posets of size less than α.
Woodin’s theorem can be reversed using inner model theory:

Theorem (Hauser)

If two-step Σ^1_4 generic absoluteness holds, then there is an inner model with a strong cardinal.

- If there is an inner model with a Woodin cardinal, great.
- If not, then $\lambda^+K = \lambda^+$ where K is the core model and λ is any singular strong limit cardinal.
- Some cardinal $\delta < \lambda$ is $<\lambda$-strong in K; otherwise $K|\lambda^+K$ would be $\Sigma^1_3(x)$ in the codes where the real $x \in V^{Col(\omega,\lambda)}$ codes $K|\lambda$, so the statement $\lambda^+K = \lambda^+$ would be $\Pi^1_4(x)$. But it is not generically absolute for Col(ω, λ^+).
- By a pressing-down argument, some δ is strong in K.

Trevor Wilson

Optimal generic absoluteness results from strong cardinals.
A totally different way to get tree representations for Π^1_3 sets:

Theorem (Moschovakis; corollary of 2nd periodicity)

If Δ^1_2 determinacy holds then every Π^1_3 set has a definable tree representation.

Corollary

If Δ^1_2 determinacy holds in every generic extension, then two-step Σ^1_4 generic absoluteness holds.

- The hypothesis of the corollary has higher consistency strength than “there is a strong cardinal.”
- It holds in V_δ if δ is a Woodin cardinal and there is a measurable cardinal above δ.
- More generally, it holds if every set has an $M^\#$.
Now back to strong cardinals. We can reduce the number 2^{2^δ} in Woodin’s consistency proof of Σ^1_4 generic absoluteness.

Main theorem (W.)

If δ is a strong cardinal, then two-step Σ^1_4 generic absoluteness holds after forcing with $\text{Col}(\omega, \delta^+)$.

Main lemma (W.)

If δ is α-strong as witnessed by $j : V \rightarrow M$ and T is a tree, then $j(T)$ becomes α-absolutely complemented after collapsing $\mathcal{P}(V_\delta) \cap L(j(T), V_\delta)$ to ω.

- In particular, it suffices to collapse 2^δ.
- For “nice” trees it suffices to collapse $\tilde{\delta}^+$.

Trevor Wilson
Optimal generic absoluteness results from strong cardinals
Sketch of proof of the main lemma (for experts):

- Say δ is α-strong as witnessed by $j : V \rightarrow M$ and T is a tree. We want an α-absolute complement for $j(T)$.
- Woodin’s argument uses a Martin–Solovay construction from measures in the set $j"(\text{measures on } \delta^{<\omega} \text{ induced by } j)$.
- The only clear bound on the number of measures is $2^{2^{\delta}}$.
- So instead of measures, we consider the corresponding prewellorderings of the Martin–Solovay semiscale.
- The prewellorderings have $\text{Col}(\omega, <\delta)$-names in the set $j"(\mathcal{P}(V_{\delta}) \cap L(j(T), V_{\delta})).$
Sketch of proof of the main theorem:

- Let δ be strong. We want to show that Σ^1_4 generic absoluteness holds after forcing with $\text{Col}(\omega, \delta^+)$.
- If every set has an M_1^\sharp then it holds in V, so suppose not.
- Then for a cone of $x \in V_\delta$ the core model $K(x)$ exists and contains the Martin–Solovay tree representations T for Σ^1_3 formulas (by the proof of Σ^1_3 correctness of K.)
- Let $j : V \rightarrow M$ have critical point δ. We want to show
 $$|\mathcal{P}(V_\delta) \cap L(j(T), V_\delta)| \leq \delta^+. \quad (*)$$
- Let the real $x \in V^{\text{Col}(\omega, \delta)}$ code V_δ. Then $L(j(T), V_\delta) \subset K(x)^M$ and $K(x)^M \models \text{CH}$, so $(*)$ follows.
Remark
The δ^+ in the theorem is optimal:

- If δ is a strong cardinal, two-step Σ_4^1 generic absoluteness can fail after forcing with $\text{Col}(\omega, \delta)$.
- If some cardinal $\delta_0 < \delta$ is also strong, then it holds (simply because δ_0^+ is collapsed.)
- However, this is essentially the only way for it to hold:

Proposition
If δ is strong and two-step (or just one-step) Σ_4^1 generic absoluteness holds after forcing with $\text{Col}(\omega, \delta)$, then there is an inner model with two strong cardinals.
Proof sketch:

- Assume that δ is strong and one-step Σ_4^1 generic absoluteness holds after collapsing only δ.
- If there is an inner model with a Woodin cardinal, great.
- Otherwise, the core model K exists. Because δ is weakly compact, $\delta^{+K} = \delta^+$.
- Some cardinal $\delta_0 < \delta$ is $<\delta$-strong in K; otherwise $K|\delta^{+K}$ would be $\Sigma_3^1(x)$ in the codes where the real $x \in V^{\text{Col}(\omega,\delta)}$ codes $K|\delta$, so the statement $\delta^{+K} = \delta^+$ would be $\Pi_4^1(x)$. But it is not generically absolute for $\text{Col}(\omega,\delta^+)$.
- Finally, δ itself is strong in K (we use Steel’s local K^c construction) and so δ_0 is strong in K also.
Question

Can we get optimal results higher in the projective hierarchy? Let $n > 1$ and assume there are n many strong cardinals $\leq \delta$.

- Two-step Σ^1_{n+3} generic absoluteness holds after forcing with $\text{Col}(\omega, 2^{2^\delta})$ (Woodin).
- Two-step Σ^1_{n+3} generic absoluteness holds after forcing with $\text{Col}(\omega, 2^\delta)$.
- It is consistent that $2^\delta = \delta^+$ and two-step Σ^1_{n+3} generic absoluteness fails after forcing with $\text{Col}(\omega, \delta)$ (e.g. in the minimal mouse satisfying the hypothesis.)
- Still open: Must two-step Σ^1_{n+3} generic absoluteness hold after forcing with $\text{Col}(\omega, \delta^+)$?
Now we turn to a pointclass beyond the projective hierarchy.

Definition

Let λ be a cardinal.

- uB_λ is the pointclass of λ-universally Baire sets.
- A formula $\varphi(\vec{v})$ is $(\Sigma^2_1)^{uB_\lambda}$ if it has the form
 \[\exists B \in uB_\lambda \ (HC; \in, B) \models \theta(\vec{v}). \]
- A formula $\varphi(\vec{v})$ is $\exists^R(\Pi^2_1)^{uB_\lambda}$ if it has the form
 \[\exists u \in \omega^\omega \ \forall B \in uB_\lambda \ (HC; \in, B) \models \theta(u, \vec{v}). \]
Example

- The formula $\varphi(\nu)$ saying “the real ν is in a mouse with a uB^λ iteration strategy” is $(\Sigma^2_1)^{uB^\lambda}$.
- The sentence φ saying “there is a real that is not in any mouse with a uB^λ iteration strategy” is $\exists^R (\Pi^2_1)^{uB^\lambda}$.

Theorem (Woodin)

Let λ be a limit of Woodin cardinals.

- Every $(\Sigma^2_1)^{uB^\lambda}$ statement is generically absolute for posets of size less than λ.
- Every $(\Sigma^2_1)^{uB^\lambda}$ formula has a tree representation for posets of size less than λ.
By contrast, generic absoluteness for $\exists^R (\Pi^2_1)^{uB_\lambda}$ is not known to follow from any large cardinal hypothesis. It can be obtained from strong cardinals by forcing, however:

Theorem (Woodin)

Let λ be a limit of Woodin cardinals and let $\delta < \lambda$ be $<$\lambda-\text{strong}$. Then two-step $\exists^R (\Pi^2_1)^{uB_\lambda}$ generic absoluteness for posets of size less than λ holds after forcing with $\text{Col}(\omega, 2^{2^\delta})$.

Theorem (W.)

Let λ be a limit of Woodin cardinals and let $\delta < \lambda$ be $<$\lambda-\text{strong}$. Then two-step $\exists^R (\Pi^2_1)^{uB_\lambda}$ generic absoluteness for posets of size less than λ holds after forcing with $\text{Col}(\omega, \delta^+)$.
Proof sketch:

- Let T be Woodin’s tree representation of a $(\Sigma^2_1)^{uB\lambda}$ formula for posets of size less than λ.
- Let $j : V \to M$ witness that δ is α-strong for sufficiently large $\alpha < \lambda$.
- We want to show

$$|\mathcal{P}(V_\delta) \cap L(j(T), V_\delta)| \leq \delta^+$.$$(*)

- Let the real $x \in V^{\text{Col}(\omega, \delta)}$ code V_δ. Then $L(j(T), V_\delta) \subseteq L(j(T), x)$ and $L(j(T), x) \models \text{CH}$, so (*) follows.
- Here CH comes not from fine structure, but from determinacy (“CH on a Turing cone.”)
The theorem is optimal because of the following result:

Proposition (W.)

Let λ be a limit of Woodin cardinals and let $\delta < \lambda$ be $<\lambda$-strong. If one-step $\exists^\mathbb{R} (\prod_1^2)^{uB\lambda}$ generic absoluteness for $\text{Col}(\omega, \delta^+)$ holds after forcing with $\text{Col}(\omega, \delta)$, then:

- The derived model at δ satisfies $\text{ZF} + \text{AD}^+ + \theta_0 < \Theta$.
- The derived model at λ satisfies $\text{ZF} + \text{AD}^+ + \theta_1 < \Theta$.

Remark

The theory “$\text{ZF} + \text{AD}^+ + \theta_1 < \Theta$” is equiconsistent with the theory “$\text{ZFC} + \lambda$ is a limit of Woodin cardinals + there are two $<\lambda$-strong cardinals below λ” (I think.)
Question
To what extent does generic absoluteness come from tree representations? More precisely,

1. Assume two-step Σ^1_4 generic absoluteness. Does every Π^1_3 formula have tree representations for arbitrarily large posets?

2. Assume two-step $\exists^R (\Pi^2_1)^{uB\lambda}$ generic absoluteness for posets of size less than λ where λ is a limit of Woodin cardinals. Does every $(\Pi^2_1)^{uB\lambda}$ formula have a tree representation for posets of size less than λ?