Optimal generic absoluteness results from strong cardinals

Trevor Wilson

University of California, Irvine

Spring 2014 MAMLS Miami University April 27, 2014

Definition

A statement φ is generically absolute if its truth is unchanged by forcing:

$$V \models \varphi \iff V[g] \models \varphi$$

for every generic extension V[g].

Example

For a tree T of height $\leq \omega$ the statement "T is ill-founded (has an infinite branch)" is generically absolute.

Many generic absoluteness results can be proved via continuous reductions to ill-foundedness of trees.

A brief introduction to trees in descriptive set theory:

- Let T be a function from $\omega^{<\omega}$ to trees of height $<\omega$ such that, if s' extends s, then T(s') end-extends T(s).
- ▶ Then T extends to a continuous function from Baire space ω^{ω} to the space of trees of height $\leq \omega$:

$$T(x) = \bigcup_{n < \omega} T(x \upharpoonright n).$$

• We will abuse notation by calling T itself a tree. An "infinite branch of T" consists of a real $x \in \omega^{\omega}$ in the first coordinate and an infinite branch of T(x) in the second coordinate.

Definition

We say that a set of reals $A \subset \omega^{\omega}$ has a tree representation if there is a tree T (equivalently, a tree-valued continuous function T) such that for every real $x \in \omega^{\omega}$,

$$x \in A \iff T(x)$$
 is ill-founded.

Remark

Every set of reals A has a trivial tree representation where the nodes are constant sequences of elements of A.

These are not useful.

A non-trivial kind of tree representation:

Definition

Trees T and \tilde{T} are α -absolutely complementing if, for every real x in every generic extension by a forcing poset of size less than α ,

T(x) is ill-founded $\iff \tilde{T}(x)$ is well-founded.

Definition

A set of reals A is α -universally Baire if it is represented by an α -absolutely complemented tree.

Definition

Let $\varphi(x)$ be a formula. A tree representation of φ for posets of size less than α is a tree T such that, in any generic extension by a poset of size less than α , the tree T represents the set of reals $\{x \in \omega^\omega : \varphi(x)\}$.

Remark

If $\varphi(x, y)$ has such a representation (generalized to two variables) then so does the formula $\exists y \in \omega^{\omega} \varphi(x, y)$:

$$\exists y \in \omega^{\omega} \varphi(x,y) \iff \exists y \ T(x,y) \text{ is ill-founded} \iff T(x) \text{ is ill-founded}.$$

The following theorems are stated in a slightly unusual way to fit with the "generic absoluteness" theme of the talk.¹

Theorem (Mostowski)

 Σ_1^1 formulas have tree representations for posets of any size. Therefore Σ_1^1 statements are generically absolute.

Theorem (Shoenfield)

 Π^1_1 formulas (and hence Σ^1_2 formulas) have tree representations for posets of any size.

Therefore \sum_{2}^{1} statements are generically absolute.

The proof constructs absolute complements of trees for Σ_1^1 formulas.

¹Note added April 28, 2014: I have been informed that the original proofs of these absoluteness theorems were not phrased in terms of trees.

For a pointclass (take \sum_{3}^{1} for example) we consider two kinds of generic absoluteness.

Definition

• One-step generic absoluteness for Σ_3^1 says for every Σ_3^1 formula $\varphi(v)$, every real x, and every generic extension V[g],

$$V \models \varphi[x] \iff V[g] \models \varphi[x].$$

Two-step generic absoluteness for \sum_{3}^{1} says that one-step generic absoluteness for \sum_{3}^{1} holds in every generic extension.

Remark

Upward absoluteness (" \Longrightarrow ") is automatic by Shoenfield.

Theorem (Martin-Solovay)

Let κ be a measurable cardinal. Then Π_2^1 formulas (and hence Σ_3^1 formulas) have tree representations for posets of size less than κ . Therefore two-step Σ_3^1 generic absoluteness holds for posets of size less than κ .

Theorem

Assume that every set has a sharp. Then Π_2^1 (and Σ_3^1) formulas have tree representations for posets of any size. Therefore two-step Σ_3^1 generic absoluteness holds.

The proof constructs absolute complements of trees for Σ_2^1 formulas.

The converse statement also holds:

Theorem (Woodin)

If two-step \sum_{3}^{1} generic absoluteness holds, then every set has a sharp.

Sketch of proof

- ▶ If 0^{\sharp} does not exist then $\lambda^{+L} = \lambda^{+}$ where λ is any singular strong limit cardinal. (The case of A^{\sharp} is similar.)
- ▶ $L|\lambda^{+L}$ is $\Sigma_2^1(x)$ in the codes where the real $x \in V^{\text{Col}(\omega,\lambda)}$ codes $L|\lambda$, so the statement $\lambda^{+L} = \lambda^+$ is $\Pi_3^1(x)$. But it is not generically absolute for $\text{Col}(\omega,\lambda^+)$, a contradiction.

Theorem (Woodin)

If δ is a strong cardinal, then two-step Σ_4^1 generic absoluteness holds after forcing with $Col(\omega, 2^{2^{\delta}})$.

Lemma (Woodin)

If δ is α -strong as witnessed by $j:V\to M$, T is a tree, and $|V_{\alpha}|=\alpha$, then after forcing with $\operatorname{Col}(\omega,2^{2^{\delta}})$, there is an α -absolute complement \tilde{T} for j(T).

- ▶ Given a Σ_3^1 formula $\varphi(x, y)$, let T be a tree representation of φ for posets of size less than κ .
- ▶ Then j(T) represents φ for posets of size less than α .
- ▶ So \tilde{T} is a tree representation of the Π_3^1 formula $\neg \varphi(x,y)$, or equivalently of the Σ_4^1 formula $\exists y \in \omega^\omega \neg \varphi(x,y)$, for posets of size less than α .

Woodin's theorem can be reversed using inner model theory:

Theorem (Hauser)

If two-step \sum_{4}^{1} generic absoluteness holds, then there is an inner model with a strong cardinal.

- ▶ If there is an inner model with a Woodin cardinal, great.
- ▶ If not, then $\lambda^{+K} = \lambda^+$ where K is the core model and λ is any singular strong limit cardinal.
- Some cardinal $\delta < \lambda$ is $<\lambda$ -strong in K; otherwise $K|\lambda^{+K}$ would be $\Sigma^1_3(x)$ in the codes where the real $x \in V^{\operatorname{Col}(\omega,\lambda)}$ codes $K|\lambda$, so the statement $\lambda^{+K} = \lambda^+$ would be $\Pi^1_4(x)$. But it is not generically absolute for $\operatorname{Col}(\omega,\lambda^+)$.
- ▶ By a pressing-down argument, some δ is strong in K.

A totally different way to get tree representations for Π_3^1 sets:

Theorem (Moschovakis; corollary of 2nd periodicity)

If $\underline{\Delta}_2^1$ determinacy holds then every Π_3^1 set has a definable tree representation.

Corollary

If $\underline{\Delta}_2^1$ determinacy holds in every generic extension, then two-step $\underline{\Sigma}_4^1$ generic absoluteness holds.

- ► The hypothesis of the corollary has higher consistency strength than "there is a strong cardinal."
- ▶ It holds in V_{δ} if δ is a Woodin cardinal and there is a measurable cardinal above δ .
- More generally, it holds if every set has an M₁[‡].

Now back to strong cardinals. We can reduce the number $2^{2^{\delta}}$ in Woodin's consistency proof of Σ_4^1 generic absoluteness.

Main theorem (W.)

If δ is a strong cardinal, then two-step \sum_{4}^{1} generic absoluteness holds after forcing with $Col(\omega, \delta^{+})$.

Main lemma (W.)

If δ is α -strong as witnessed by $j:V\to M$ and T is a tree, then j(T) becomes α -absolutely complemented after collapsing $\mathcal{P}(V_{\delta})\cap L(j(T),V_{\delta})$ to ω .

- In particular, it suffices to collapse 2^{δ} .
- For "nice" trees it suffices to collapse δ^+ .

Sketch of proof of the main lemma (for experts):

- ▶ Say δ is α -strong as witnessed by $j: V \to M$ and T is a tree. We want an α -absolute complement for j(T).
- Woodin's argument uses a Martin–Solovay construction from measures in the set

$$j$$
 "(measures on $\delta^{<\omega}$ induced by j).

- ▶ The only clear bound on the number of measures is $2^{2^{\delta}}$.
- ▶ So instead of measures, we consider the corresponding prewellorderings of the Martin–Solovay semiscale.
- ▶ The prewellorderings have $\mathsf{Col}(\omega, <\! \delta)$ -names in the set

$$j$$
 " $(\mathcal{P}(V_{\delta}) \cap L(j(T), V_{\delta})).$

Sketch of proof of the main theorem:

- Let δ be strong. We want to show that \sum_{4}^{1} generic absoluteness holds after forcing with $\text{Col}(\omega, \delta^{+})$.
- ▶ If every set has an M_1^{\sharp} then it holds in V, so suppose not.
- ► Then for a cone of $x \in V_{\delta}$ the core model K(x) exists and contains the Martin–Solovay tree representations T for Σ_3^1 formulas (by the proof of Σ_3^1 correctness of K.)
- ▶ Let $j: V \to M$ have critical point δ . We want to show

$$|\mathcal{P}(V_{\delta}) \cap L(j(T), V_{\delta})| \le \delta^{+}.$$
 (*)

▶ Let the real $x \in V^{\mathsf{Col}(\omega,\delta)}$ code V_{δ} . Then $L(j(T), V_{\delta}) \subset K(x)^{M}$ and $K(x)^{M} \models \mathsf{CH}$, so (*) follows.

Remark

The δ^+ in the theorem is optimal:

- ▶ If δ is a strong cardinal, two-step \sum_{4}^{1} generic absoluteness can fail after forcing with $Col(\omega, \delta)$.
- ▶ If some cardinal $\delta_0 < \delta$ is also strong, then it holds (simply because δ_0^+ is collapsed.)
- ▶ However, this is essentially the only way for it to hold:

Proposition

If δ is strong and two-step (or just one-step) \sum_{4}^{1} generic absoluteness holds after forcing with $\operatorname{Col}(\omega, \delta)$, then there is an inner model with two strong cardinals.

Proof sketch:

- Assume that δ is strong and one-step \sum_{4}^{1} generic absoluteness holds after collapsing only δ .
- ▶ If there is an inner model with a Woodin cardinal, great.
- ▶ Otherwise, the core model K exists. Because δ is weakly compact, $\delta^{+K} = \delta^+$.
- Some cardinal $\delta_0 < \delta$ is $<\delta$ -strong in K; otherwise $K|\delta^{+K}$ would be $\Sigma_3^1(x)$ in the codes where the real $x \in V^{\operatorname{Col}(\omega,\delta)}$ codes $K|\delta$, so the statement $\delta^{+K} = \delta^+$ would be $\Pi_4^1(x)$. But it is not generically absolute for $\operatorname{Col}(\omega,\delta^+)$.
- ▶ Finally, δ itself is strong in K (we use Steel's local K^c construction) and so δ_0 is strong in K also.

Question

Can we get optimal results higher in the projective hierarchy? Let n > 1 and assume there are n many strong cardinals $\leq \delta$.

- ► Two-step \sum_{n+3}^{1} generic absoluteness holds after forcing with $Col(\omega, 2^{2^{\delta}})$ (Woodin).
- ► Two-step \sum_{n+3}^{1} generic absoluteness holds after forcing with $Col(\omega, 2^{\delta})$.
- It is consistent that $2^{\delta} = \delta^+$ and two-step \sum_{n+3}^1 generic absoluteness fails after forcing with $\operatorname{Col}(\omega, \delta)$ (e.g. in the minimal mouse satisfying the hypothesis.)
- Still open: Must two-step \sum_{n+3}^{1} generic absoluteness hold after forcing with $Col(\omega, \delta^+)$?

Now we turn to a pointclass beyond the projective hierarchy.

Definition

Let λ be a cardinal.

- ▶ uB_{λ} is the pointclass of λ -universally Baire sets.
- ▶ A formula $\varphi(\vec{v})$ is $(\Sigma_1^2)^{uB_\lambda}$ if it has the form

$$\exists B \in \mathsf{uB}_{\lambda} (\mathsf{HC}; \in, B) \models \theta(\vec{v}).$$

▶ A formula $\varphi(\vec{v})$ is $\exists^{\mathbb{R}}(\Pi_1^2)^{\mathsf{uB}_{\lambda}}$ if it has the form

$$\exists u \in \omega^{\omega} \, \forall B \in \mathsf{uB}_{\lambda} \, (\mathsf{HC}; \in, B) \models \theta(u, \vec{v}).$$

Example

- ► The formula $\varphi(v)$ saying "the real v is in a mouse with a uB_{λ} iteration strategy" is $(\Sigma_1^2)^{uB_{\lambda}}$.
- ► The sentence φ saying "there is a real that is not in any mouse with a uB_{λ} iteration strategy" is $\exists^{\mathbb{R}}(\Pi_{1}^{2})^{uB_{\lambda}}$.

Theorem (Woodin)

Let λ be a limit of Woodin cardinals.

- ► Every $(\sum_{1}^{2})^{uB_{\lambda}}$ statement is generically absolute for posets of size less than λ .
- ▶ Every $(\Sigma_1^2)^{uB_{\lambda}}$ formula has a tree representation for posets of size less than λ .

By contrast, generic absoluteness for $\exists^{\mathbb{R}}(\Pi_1^2)^{\mathsf{uB}_{\lambda}}$ is not known to follow from any large cardinal hypothesis. It can be obtained from strong cardinals by forcing, however:

Theorem (Woodin)

Let λ be a limit of Woodin cardinals and let $\delta < \lambda$ be $<\lambda$ -strong. Then two-step $\exists^{\mathbb{R}}(\underline{\mathsf{\Pi}}_1^2)^{\mathsf{uB}_\lambda}$ generic absoluteness for posets of size less than λ holds after forcing with $\mathsf{Col}(\omega, 2^{2^\delta})$.

Theorem (W.)

Let λ be a limit of Woodin cardinals and let $\delta < \lambda$ be $<\lambda$ -strong. Then two-step $\exists^{\mathbb{R}}(\underline{\mathbb{n}}_1^2)^{\mathsf{uB}_\lambda}$ generic absoluteness for posets of size less than λ holds after forcing with $\mathsf{Col}(\omega, \delta^+)$.

Proof sketch:

- Let T be Woodin's tree representation of a $(\Sigma_1^2)^{\mathsf{uB}_\lambda}$ formula for posets of size less than λ .
- ▶ Let $j: V \to M$ witness that δ is α -strong for sufficiently large $\alpha < \lambda$.
- We want to show

$$|\mathcal{P}(V_{\delta}) \cap L(j(T), V_{\delta})| \le \delta^{+}.$$
 (*)

- Let the real $x \in V^{\mathsf{Col}(\omega,\delta)}$ code V_{δ} . Then $L(j(T),V_{\delta}) \subset L(j(T),x)$ and $L(j(T),x) \models \mathsf{CH}$, so (*) follows.
- ► Here CH comes not from fine structure, but from determinacy ("CH on a Turing cone.")

The theorem is optimal because of the following result:

Proposition (W.)

Let λ be a limit of Woodin cardinals and let $\delta < \lambda$ be $<\lambda$ -strong. If one-step $\exists^{\mathbb{R}}(\overline{\mathbb{D}}_1^2)^{\mathsf{uB}_\lambda}$ generic absoluteness for $\mathsf{Col}(\omega,\delta^+)$ holds after forcing with $\mathsf{Col}(\omega,\delta)$, then:

- ▶ The derived model at δ satisfies $ZF + AD^+ + \theta_0 < \Theta$.
- ▶ The derived model at λ satisfies $ZF + AD^+ + \theta_1 < \Theta$.

Remark

The theory "ZF + AD $^+$ + θ_1 < Θ " is equiconsistent with the theory "ZFC + λ is a limit of Woodin cardinals + there are two $<\lambda$ -strong cardinals below λ " (I think.)

Question

To what extent does generic absoluteness come from tree representations? More precisely,

- 1. Assume two-step \sum_{4}^{1} generic absoluteness. Does every Π_{3}^{1} formula have tree representations for arbitrarily large posets?
- 2. Assume two-step $\exists^{\mathbb{R}}(\overline{\mathbb{D}}_1^2)^{\mathsf{uB}_{\lambda}}$ generic absoluteness for posets of size less than λ where λ is a limit of Woodin cardinals. Does every $(\Pi_1^2)^{\mathsf{uB}_{\lambda}}$ formula have a tree representation for posets of size less than λ ?