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1 Introduction

Let Xk be a proper irreducible separated scheme of finite type over a field k. We will also assume
that Xk satisfies Serre’s S2 condition (for the sake of simplicity the reader may think that Xk

is smooth or a locally complete intersection). For a noetherian scheme T over k denote XT =
(Xk) ×Spec(k) T and let Φ(T ) be the collection of all closed subsets Z ⊂ XT such that every point
z ∈ Z has codimension ≥ 3 in its fiber over T . Fix a reductive group G over k.

Definition. In the notation above, let FG(T ) be a groupoid category with the objects (E, U) where
E is a principal G-bundle defined on an open subscheme U ⊂ XT , such that the closed complement
of U is a subset in Φ(T ). A morphism (E1, U1) → (E2, U2) is an isomorphism E1|W ' E2|W on an
open subset W ⊂ U1 ∩ U2 such that the complement of W is again in Φ(T ). The composition of
morphisms is defined in an obvious way.

For any morphism α : T ′ → T of schemes over T we have pullback functors α∗ : FG(T ) → FG(T ′)

satisfying the usual compatibility conditions for any pair of morphisms T ′′ β−→ T ′ α−→ T , i.e. FG is
a groupoid over the category of noetherian schemes over k, cf. Section 1 in [Ar]. As usual, we will
mostly deal with its restriction to affine noetherian schemes over k, writing XA and Φ(A) instead
of XSpec(A) and Φ(Spec(A)), respectively. The main goal of this paper is the following result.

Theorem 1 FG is an algebraic stack, locally of finite type over k, with separated and quasi-compact
diagonal.

Thus we obtain a partial compactification of the stack of G-bundles on Xk. Our strategy of proof
is straightforward, if seldom used: we apply Artin’s representability criterion, cf. Theorem 5.3 in
[Ar] for a statement and [Li], [Ao] for examples of application.

For the most part of the paper (see Sections 3-7) we consider the case of vector bundles, i.e. work
with G = GL(r) for fixed r ≥ 1; and write F instead of FG. In Section 8 we show how the proof is
extended to the case of general G and also explain why the result fails when the “codimension 3”
condition in the definition of Φ(T ) is replaced by “codimension 2”.

Acknowledgements. The main result of this paper was conjectured by Vladimir Drinfeld whom
the author thanks for the useful discussions and encouragement. Thanks are also due to Victor
Ginzburg for helping to clarify the role of Serre’s S2 condition (which is closely related to the
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concept of a reflexive sheaf). This work was supported by the Sloan Research Fellowship and UCI
Teaching Relief Grant.

2 Depth and local cohomology.

We will freely use definitions and basic properties of local cohomology and depth which can be found
e.g. in Section 18 and Appendix 4 to [E] and Sections I-III of [SGA 2]. Observe that the scheme
XT will not satisfy Serre’s S2 condition since no depth assumptions are made for T . However, we
can formulate a relative version of this condition.

Definition. For any point x ∈ XT let d(x) be the codimension of x in its fiber over T .

Lemma 2 Let E be a vector bundle on an open subset U ⊂ XT and M a coherent sheaf on T .
For t ∈ T let Xt be the fiber of XT over t and suppose that for every t the structure sheaf of the
intersection Ut = U ∩Xt satisfies Serre’s condition Sn. Set EM = E ⊗OT

M . Then for any x ∈ U
one has depthU,xEM ≥ min(n, d(x)).

Definition. We will call the inequality stated in this lemma the relative Sn condition. In this
paper n = 2 or 3.

Proof of the lemma. Since the question is local we can take E = OU . Thus we can take T = Spec(A),
U = X = Spec(C) ×k Spec(A) and EM of the form C ⊗k M . Since the fiber over t ∈ T is given
by Xk(t), the codimension of x in Xt is equal to the codimension of its image x′ ∈ Xk. Setting
r = min(n, d(x)) we can find a C-regular sequence f1, . . . , fr in the maximal ideal of x′ in C.
The same fi viewed as elements of C ⊗k A will belong to the maximal ideal of x and form a
C ⊗k M -regular sequence, which finishes the proof. ¤

Below, dealing with obstructions, deformations and infinitesimal automorphisms we need the fol-
lowing construction. For for any coherent sheaf E on XT set

H i
T,Φ(E) = lim−→Z∈Φ(T )H

i(XT \ Z, E)

where the filtered direct limit is taken with respect to the inclusion of closed subsets Z ⊂ Z ′ in
Φ(T ). If T = Spec(A) is affine, we write H i

A,Φ(E) instead of H i
Spec(A),Φ(E). If E is defined only on

an open subset U = XT \ Z0 with Z0 ∈ Φ(T ) we can use the same definition but take the limit
over those Z which contain Z0. Observe that for i = 0, 1 the cohomology groups in the limit in fact
stabilize under certain restrictions on E:

Lemma 3 With the notation just introduced, assume that Z ⊂ Z ′ are in Φ(T ). If E satisfies the
relative S2 condition on XT \ Z then the natural restriction morphism

ρi : H i(XT \ Z, E) → H i(XT \ Z ′, E)

is an isomorphism for i = 0 and injective for i = 1. If in addition E satisfies the relative S3

condition on XT \ Z then ρi is an isomorphism for i = 0, 1 and injective for i = 2.
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Proof. Denote U = XT \ Z, W = U ∩ Z ′ and consider the spectral sequence of local cohomology
Hp(U,Hq

W (E)) ⇒ Hp+q
W (U,E). By the relative S2 condition the local cohomology sheaves Hi

W (E)
vanish for i = 0, 1 while the relative S3 condition at the points of W also implies H2

W (E) = 0. Now
the assertion follows from the standard long exact sequence

. . . → H i
W (U,E) → H i(U,E) → H i(U \W,E) → H i+1

W (U,E) → . . . ¤

Observe that the relative S3 condition on EM also holds if Z contains

Z◦
T = Z◦ ×Spec(k) T ∈ Φ(T )

where Z◦ ⊂ Xk is the set of all points in Xk where the S3 condition fails for the structure sheaf.
Observe that Z◦ is closed by [EGA IV2], Proposition 6.11.2; since its complement contains all points
of codimension ≥ 2 we indeed have Z◦

T ∈ Φ(T ).

Corollary 4 If Z◦
T ⊂ Z then

H i
T,Φ(EM) = H i(XT \ Z, EM)

for i = 0, 1 and EM = E⊗T M as above. Moreover, if j stands for the open embedding XT \Z ↪→ XT

then the sheaves j∗EM and R1j∗EM are coherent on XT and if T = Spec(A) is affine the two stable
cohomology groups are finitely generated A-modules.

Proof. Stabilization follows immediately from the previous lemma. Coherence of the two direct
images is due to [SGA 2], VII.2.3 while the finite generation is proved by combining the spectral
sequence Hp(XT , Rqj∗(EM)) ⇒ Hp+q(XT \ Z,EM) with the fact that XT is proper over T . ¤

Remark. Of course, for i = 2 even the cohomology group H2(P3
k \ P,O) is infinite dimensional

over k for any closed point P .

3 Locally finite presentation.

In this section we do not use the S2 assumption on Xk. Let R = lim−→ Rα be a filtered direct limit
of k-algebras.

Proposition 5
lim−→ F (Rα) → F (R)

is an equivalence of categories.

Proof. The assertion means that any object (E, U) ∈ F (R) is an image of some (Eα, Uα) ∈ F (Rα)
and that, whenever (Eα, Uα) and (Eβ, Uβ) give isomorphic objects in F (R), there exists γ such
that γ ≥ α, γ ≥ β and the corresponding objects in F (Rγ) are isomorphic. In addition, a similar
condition should hold for morphisms.

To prove the assertion for objects, consider a vector bundle E on U ⊂ XR and take a finite
affine covering {Ui} of U such that E|Ui

is trivial.
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Using the results of Sections 8.2-8.5 of [EGA IV3] we see that there exists α and open subsets Uα
i

such that Ui = π−1
α (Uα

i ) where πα : XR → XRα is the natural projection. Since in general a scheme
W is affine iff the canonical morphism W → Spec(Γ(W,OW )) is an isomorphism, by increasing α
if necessary we can assume that all Uα

i are affine.
The transition functions for E given by φij : Ui∩Uj → GLr(k) can be viewed as automorphisms

of the trivial bundle. Increasing α we can assume that φij arise from regular maps φα
ij : Uα

i ∩
Uα

j → GL(r). Increasing α again we can assume that φα
ij satisfy the cocycle condition and thus

define a vector bundle Eα on Uα =
⋃

i U
α
i . By construction, E ' φ∗αEα. To show that the

closed complement Zα of Uα is in Φ(Spec(Rα)) (again, after a possible increase of α) note that
U = π−1

α (Uα) and the fibers of XR → Spec(R) are obtained from the fibers XRα → Spec(Rα) by
extension of scalars. Therefore the closed subset W of points s ∈ Spec(Rα) for which codimension
of Zα ∩Xs is ≤ 2 has empty preimage in Spec(R). Therefore, for some α′ ≥ α the preimage of W
in Spec(Rα′) is empty and we can replace α by α′.

To prove surjectivity on morphisms, let (E1, U1) and (E2, U2) be two objects in F (R) and
suppose we are given an isomorphism φ : E1|U ' E2|U where U ⊂ U1 ∩ U2 is open with its closed
complement in Φ(R).

By the previous argument, we can assume that Ei is isomorphic to the pullback of some vector
bundle Eα

i on an open subset Uα
i ⊂ X × Spec(Rα). Increasing α we can assume that U is the

preimage of an open subset Uα ⊂ Uα
1 ∩ Uα

2 . Then Eα
1 |Uα and Eα

2 |Uα become isomorphic after
pullback to U hence by loc. cit. by increasing α we can find an isomorphism φα : Eα

1 |Uα ' Eα
2 |Uα

which induces φ on U . As before, we may have to increase α one more time to ensure that the
complement of Uα is in Φ(Rα).

Injectivity on morphisms is an immediate consequence of Theorem 8.5.2 in loc. cit. ¤

4 Small affine pushouts.

Let A0 be a noetherian k-algebra, and A′ → A a surjection of two infinitesimal extensions of A0

such that M = ker(A′ → A) is a finite A0 module. Let B be a noetherian ring and B → A a
morphism, such that the composition B → A → A0 is surjective.

Denote by B′ the pushout A′ ×A B, i.e. the subset of pairs (a, b) ∈ A′ × B which have the
same image in A. Then B′ → B is surjective and its kernel may be identified with M viewed
as a B-module. Observe that Spec(B′) is homeomorphic to Spec(B), while Spec(A′), Spec(A)
and Spec(A0) are homeomorphic to each other, and Spec(A0) → Spec(B) is naturally a closed
subscheme by the assumption.

Fix an object a = (EA, UA) ∈ F (A). Let Fa(B) the groupoid of extensions of a over Spec(B), and
similarly for A′, B′.

Proposition 6 The natural functor

Fa(B
′) → Fa(A

′)× Fa(B)

is an equivalence of groupoids.
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Proof. Suppose that (EA′ , UA′), (EB, UB) are two extensions of (E, U) to XA′ and XB, respectively.
Since Spec(A) and Spec(A′) are homeomorphic, shrinking UA′ , UB and UA, if necessary, we can
assume UA′ ' UA ' UB ∩XA0 (homeomorphisms induced by the natural embeddings). Denote by
UB′ the subset UB viewed as an open subset of XB′ . We have a commutative diagram

UA
p−−−→ UA′

q

y i

y
UB

j−−−→ UB′

where the horizontal arrows are homeomorphisms. Since q∗EB ' EA, p∗UA′ ' EA and ip = jq
there will be an exact sequence on UB′

i∗EA′ ⊕ j∗EB → (ip)∗EA → 0

where the first arrow is given by the difference of the obvious canonical maps. One can check
that the kernel EB′ of the first arrow is a locally free sheaf of rank r on UB′ ⊂ XB′ such that
i∗EB′ ' EA′ , j∗EB′ ' EB, (ip)∗EB′ ' EA in a compatible way. A straightforward check shows that
the correspondence (EA′ , EB) 7→ EB′ induces which is an equivalence of categories. ¤

5 Automorphisms, deformations, obstructions.

We keep the notation of Section 4 and recall that for a finitely generated A0-module M and a vector
bundle E we denote EM = E ⊗A0 M .

5.1 Aut, D, O

Infinitesimal automorphisms.

Let A = A0, A′ = A0 ⊕M . Any a0 ∈ F (A0) given by a pair (E, U) admits a trivial extension to
A0⊕M defined by E ′ = E⊕EM . We are interested in the group of automorphisms Auta0(A0 +M)
of the bundle E ′, which restrict to identity over A0. Every such automorphism is defined uniquely
by a morphism E → EM defined, perhaps, on a smaller open subset V ⊂ U . In other words

Auta0(A0 + M) = H0
A0,Φ(End(E)M)

By Corollary 4 this is a finitely generated module over A0.

Deformations

Now consider Da0(M), the set of isomorphism classes of extensions of a0 = (E, U) to A′. A standard
argument, cf. e.g. Chapter IV of [I], identifies Da0(M) with H1

A0,Φ(End(E)M) which is also finitely
generated over A0, as established in Corollary 4.

Obstructions
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Our goal is to define a finitely generated submodule of H2
A0,Φ(End(E)M) which will serve as ob-

struction module for our problem. First consider a square zero extension 0 → M → A′ → A → 0
and a = (EA, UA) ∈ F (A). Let UA′ ⊂ XA′ be the open subset homeomorphic to UA, with its
natural structure of an open subscheme of XA′ . By [I] there is an obstruction to deforming EA over
UA′ , given by a class

ω(EA) ∈ Ext2UA
(End(EA),M)

which is a Yoneda product of two classes

a(EA) ∈ Ext1UA
(End(EA), LUA

), κ(U/U ′) ∈ Ext1UA
(LUA

,M).

Here LUA
is the cotangent complex of U over k, a(E) is the Atiyah class of E and κ(UA/UA′) ∈

Ext1UA
(LUA

,M) is the Kodaira-Spencer class of UA′ viewed as a deformation of UA, cf. loc.cit. More-
over, since XA is a direct product of Xk and Spec(A), its cotangent complex over k splits into a direct
sum LXk

⊕LA of the pullbacks of cotangent complexes from Xk and Spec(A), respectively. Since XA′

and UA′ viewed as deformations of XA and UA, respectively, are induced by Spec(A) → Spec(A′),
the Kodaira-Spencer class κ(UA/UA′) belongs to the direct factor Ext1UA

(LA,M) ⊂ Ext1U(LUA
,M).

Therefore, ω(EA) may be viewed as the product of the Kodaira-Spencer class with the image of
the Atiyah class a′(E) ∈ Ext1UA

(End(EA), LA). If we represent a′(E) by an extension

0 → LA → Q → End(EA) → 0,

then ω(EA) will become the image of κ(UA/UA′) under the connecting homomorphism:

. . . → Ext1UA
(Q,M) → Ext1UA

(LA,M) → Ext2UA
(End(EA),M) → . . .

Therefore, the obstruction ω(EA) can be viewed as a element of the following cokernel Oa(UA,M):

Ext1UA
(Q,M) → Ext1UA

(LA,M) → Oa(UA,M) → 0.

Since the cotangent complex of Spec(A) is concentrated in non-positive degrees and has finitely
generated cohomology, we can find a free resolution . . . → L2 → L1 → L0 → LA → 0 and there-
fore a locally free resolution . . . → L2 → L1 → Q0 → Q → 0. The standard spectral sequence
Ep,q

1 = ExtpUA
(Lq,M) ⇒ Extp+q

UA
(LA,M) shows that Ext1UA

(LA,M) has a two-step filtration with
associated graded depending only on Ep,q

1 for p ≤ 1 and q ≤ 2. Similar argument applies to
Ext1UA

(Q,M) which allows us to conclude that Oa(UA,M) is finitely generated over A and inde-
pendent of UA as long as UA ∩ Z◦

A = ∅ (where Z◦
A is defined before Corollary 4). For such UA,

denote the stabilized module Oa(UA,M) simply by Oa(M).

Assume now that A is itself an extension

0 → N → A → A0 → 0

where N is nilpotent and acts on M by zero (so that M is an A0-module). Both Ext1UA
(Q, M) and

Ext1UA
(LA, M) in this case are A0-modules, hence Oa(M) is also a finitely generated A0-module.

In fact, if a0 = (E, U) is the restriction of a = (EA, UA) and Q• and L• are the above locally free
resolutions, then

Ext1UA
(Q,M) = Ext1U(Q• ⊗A A0,M); Ext1UA

(LA,M) = Ext1U(L• ⊗A A0,M)
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and by virtue of the spectral sequence just mentioned we can assume that Q•, L• are concentrated
in degrees [−2, 0]. Denoting P • = HomU(Q• ⊗A A0,OU) = (P 0 → P 1 → P 2) and similarly for
R• = HomU(L• ⊗A A0,OU) = (R0 → R1 → R2) we see that

Oa(M) = Coker
[
H1(U, P • ⊗M) → H1(U,R• ⊗M)

]

By the standard argument, cf. [I], if the obstruction ω(EA) vanishes, all deformations of EA over
UA′ form a pseudo-torsor over Da0(M).

5.2 Etale localization, completions, constructibility.

Let p : A → B be etale and consider p0 : A0 → B0 defined by B0 = B⊗AA0, p0 = p⊗AA0. Consider
a = (EA, UA) ∈ F (A) and let b be its pullback in F (B), and similarly for a0 = (E,U) ∈ F (A0),
b0 ∈ F (B0).

Proposition 7 There exist natural isomorphisms:

Ob(M ⊗A0 B0) ' Oa(M)⊗A0 B

and

Autb0(B0 + M ⊗A0 B0) ' Auta0(A0 + M)⊗A0 B0; Da0(M ⊗A0 B0) ' Da0(M)⊗A0 B0

Proof. For Aut and D this follows from their identification with H i(U,End(E)M) for i = 0, 1 and
some U ⊂ XA0 , and etale localization for cohomology. For O, one uses the definition

Coker
[
Ext1UA

(Q,M) → Ext1UA
(LA,M)

]

with some UA ⊂ XA, and then applies etale localization for Ext1 plus the idenity LB = LA ⊗A B
which holds for any etale extension A → B, cf. Chapter II of [I]. ¤

Proposition 8 Let m ⊂ A0 be a maximal ideal. Then

Da0(M)⊗A0 Â0 ' lim←− Da0(M/mnM)

and similarly for Auta0(A0 + M).

Proof. Both follow immediately from Proposition 0.13.3.1 in [EGA III1] applied to the completion
of the open subscheme U for which H i(U,End(E)M) compute for i = 0, 1 the modules Auta0 and
Da0 , respectively. ¤

Proposition 9 Assume that the ring A0 is reduced. Then there exists an open dense subset of
points p ∈ Spec(A0), so that

Da0(M)⊗A0 k(p) ' Da0(M ⊗A0 k(p)),

and similarly for Auta0(A0 + M) and Oa(M).
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Proof.

Step 1. Without loss of generality we can also assume that Spec(A0) is irreducible, i.e. A0 is a
domain. It suffices to show that, replacing Spec(A0) by its affine open subset, one can achieve

H i(U, P •
M) ' H i(U, P •)⊗A0 M ; i = 0, 1

for arbitrary finitely generated A0-module M and a fixed complex P • = (P 0 → P 1 → P 2) of vector
bundles on U .

We first consider the case when P • = P 0 =: P is a single vector bundle in degree zero. Denote
XA0 by X and the open embedding U → X by j. Recall that the sheaves j∗(PM), R1j∗(PM) are
coherent on X by Corollary 4. Recall also the standard exact sequence for a quasicoherent sheaf
F on X:

. . . → H i
Z(X,F) → H i(X,F) → H i(U, j∗F) → H i+1

Z (X,F) → . . .

and the spectral sequence Ep,q
2 = Hq(X,Hp

Z(F)) ⇒ Hp+q
Z (X,F). Since F = j∗PM satisfies F '

j∗j∗F we have H0
Z(j∗PM) = H1

Z(j∗PM) = 0. This gives an isomorphism H0(U, PM) ' H0(X, j∗PM)
and a long exact sequence

0 → H1(X, j∗PM) → H1(U, PM) → H0(X, R1j∗PM) → H2(X, j∗PM) (1)

Step 2. Since X is proper over Spec(A0), for any coherent sheaf F on X and any finitely A0-module
M one has

H i(X,FM) ' H i(X,F)⊗A0 M, i ≥ 0 (2)

after a localization of A0 at powers of a nonzero element f ∈ A0. In fact, only finitely many A0-
modules H i(X, F ) are non-zero and by properness they are finitely generated over A0. Applying the
following Generic Freeness Lemma, cf. Theorem 14.4 in [E], we can ensure that after a localization
of A0 the cohomology modules will be free of finite rank:

Lemma 10 Let A0 be a noetherian domain and B a finitely generated A0-algebra. If N is a finitely
generated B-module, there exists a nonzero element t ∈ A0, such that the localization N [t−1] is free
over A0[t

−1].

By combining Cech complex with projective resolutions we can find a complex C(F ) of flat A0-
modules, such that C(F )⊗A0 M computes the cohomology of FM for any M . This gives a second
quadrant spectral sequence

Ep,−q
2 = TorA0

q (Hp(X,F ),M) ⇒ Hp−q(X, F ⊗M)

which by flatness of H i(X, F ) reduces to isomorphisms H i(X, F⊗M) = H i(X, F )⊗M , as required.

Step 3. Denote the exact sequence (1) by K•(M). Localizing A0 further we can assume that

Coker
[
H0(X, R1j∗P ) → H2(X, j∗P )

]

is also free over A0. Then K•(A0) is a complex of projective A0-module and therefore K•(A0)⊗A0 M
is also exact. Comparing K•(A0)⊗A0 M with K•(M) and using the isomorpism of Step 2, we reduce
the isomorphisms

H i(U, PM) ' H i(U, P )⊗A0 M i = 0, 1 (3)

to the following
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Lemma 11 In the notation introduced above,

j∗(PM) ' j∗(P )M , R1j∗(PM) ' R1j∗(P )M (4)

Proof of the lemma. Since the statement in local we can assume that X = Spec(B) is affine.
Let N be the B-module corresponding to the coherent sheaf j∗(P ) and I ⊂ B an ideal such that
Supp(B/I) = Z. Then the local cohomology modules H0

I (N), H1
I (N) vanish by Step 1. Hence by

Proposition 18.4 in [E], depthI(N) ≥ 2 and there is an N -regular sequence (f, g) ∈ I. We can also
assume that (f, g) is regular on NM = N ⊗A0 M for any M . Indeed, by regularity on N we have
an exact sequence

0 → N → N ⊕N → N → N/(f, g)N → 0

of finitely generated B-modules. Localizing A0 we may assume that all modules in this sequence
are free over A0 therefore the complex

0 → NM → NM ⊕NM → NM → (
N/(f, g)N

)⊗A0 M → 0

is also exact. Since its first three terms give the Koszul complex of NM , (f, g) is NM -regular. In
particular, H0

I (NM) = H1
I (NM) = 0. Since NM corresponds to the sheaf j∗(P )M , the vanishing of

local cohomology implies the first isomorphism of the lemma

j∗(P )M ' j∗j∗(j∗(P )M) ' j∗(PM).

The second isomorphism R1j∗(PM) ' R1j∗(P )M is equivalent to

H2
I (NM) ' H2

I (N)⊗A0 M.

We claim that one can replace I by an ideal I ′ = (f, g, h) ⊂ I, where h ∈ I, such that H2
I (NM) '

H2
I′(NM) for all M . In fact, by prime avoidance, cf. Lemma 3.3 in [E], one can find h ∈ I such

that h /∈ P whenever P is an associated prime of B/(f, g)B which does not contain I. Since P is
locally free away from Z, the sequence (f, g) is OU -regular. This implies that Z ′ = V (f, g, h) has
codimension 3 in X at any point of of Z ′ \ Z. Recall that by our assumption Z contains all points
where the fiberwise S3 conditon is violated therefore by Lemma 2 the sheaf corresponding to NM

satisies the relative S3 condition on U and H2
Z′(P ⊗A0 M)|U = 0. Therefore

H2
I′(NM) ' H0

I (H2
I′(NM)) ' H2

I (NM)

where the last isomorphism uses the spectral sequence Hp
I (Hq

I′(NM)) ⇒ Hp+q
I (NM) coming from

RΓI1+I2 ' RΓI1 ◦ RΓI2 ; and vanishing of H0
I′(NM) and H1

I′(NM) due to NM -regular sequence
(f, g) ∈ I ′.

The local cohomology H i
I′(NM) are computed by the complex C•(P )⊗A0 M where C•(P ) is the

Cech complex of the vector bundle P on X \ Z ′ with respect to the affine covering Xf ∪Xg ∪Xh.
Observe that each term of C•(P ) is flat over A0, and the tensor product C•(P ) ⊗A0 M can be
identified with the Cech complex of PM . Then the second quadrant spectral sequence

E−p,q
2 = TorA0

p (Hq(C•(P )),M) ⇒ H i(C•(P )⊗A0 M)
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shows that Hq
I′(NM) ' Hq

I′(N)⊗A0 M holds for any M, q if all Hq
I′(N) are flat over A0. For q = 0, 1

these modules vanish as above while for q = 2 we have

H2
I′(N) = H2

I (N) = Γ(X,R1j∗P )

which is finitely generated over B since R1j∗P is coherent. By Generic Freeness we can assume
that H2

I′(N) is free over A0 after a localization. The only remaining local cohomology group is

H3
I′(N) = lim−→ N/(fn, gn, hn)N

Since a filtered direct limit of projectives is flat, it suffices to show that Nn = N/(fn, gn, hn)N are
projective over a dense open subset of V ⊂ Spec(AN), for all n ≥ 1 . By a standard combinatorial
argument Nn admits a filtration with successive quotients of the type

Np,q,r = f pgqhrN/(fp+1gqhr, f pgq+1hr, f pgqhr+1)N.

and it suffices to ensure that these modules are projective over some V ⊂ Spec(A0).
Both B and N have three filtrations by powers of f, g, h respectively and taking associated

graded quotients gr(·) = grhgrggrf (·) we obtain a Z3-graded ring gr(B) and a finitely generated
module gr(N) =

⊕
p,q,r≥0 Np,q,r. Applying Generic Freeness to gr(N) we can localize A0 at a single

element and assume that gr(N) is free over A0. Then each direct factor Np,q,r must be projective
over A0, hence Nn is also projective over A0 and the direct limit of Nn is flat, as required. This
proves the lemma. ¤
Therefore, for a vector bundle P on U we have established isomorphisms

H i(U, PM) ' H i(U, P )⊗A0 M ; i = 0, 1.

Step 4. Now we return to the general case of a complex P • = (P 0 → P 1 → P 2) of vector bundles
on U . Consider the spectral sequence Er,q

1 (M) = Hq(U, P r
M) ⇒ Hr+q(U, P •

M). Then Er,q
2 is the r-th

cohomology of
E•,q

1 (M) =
[
Hq(U, P 0

M) → Hq(U, P 1
M) → Hq(U, P 2

M)
]

By previous step for q = 0, 1 we can localize A0 to achieve Hq(U, P r
M) ' Hq(U, P r) ⊗A0 M . In

addition, we can ensure that the cohomology of the complexes E•,q
1 (A0) for q = 0, 1, are free finitely

generated A0-modules. The second assumption guarantees that for E•,q
1 (A0) cohomology commutes

with ⊗A0M ; which in view of the first assumption gives Er,q
2 (M) = Er,q

2 (A0)⊗A0 M for q = 0, 1.
Now the proposition follows by the isomorphism H0(U, P •

M) = E0,0
2 (M) and the exact sequence

0 → E1,0
2 (M) → H1(U, P •

M) → E0,1
2 (M) → E2,0

2 (M) ¤

6 Effectiveness

Proposition 12 Let Â be a complete local algebra with residue field of finite type over k and
maximal ideal m, then the canonical functor

F (Â) → lim←− F (Â/mn)

is an equivalence of categories.
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Proof. Let {(En, Un) ∈ F (Â/mn)} be a sequence representing an object on the right hand side.
Shrinking Un as in Section 2 we can assume that each En satisfies the relative S3 condition on Un.
But then by the tangent-obstruction theory and stabilization of cohomology the set of isomorphism
classes of extensions of En to F (A/mn+1), i.e. the cohomology H1(?, End(En)⊗mn/mn+1), will be

the same over Un as over any open subset W ⊂ Un ∩ Un+1 with closed complement in Φ(Â/mn).
Therefore we can assume that En+1 is defined also on Un and by induction all En are defined on
the same open subset U ′. Then by the main result of [B] there exists a bundle E on an open subset

U ⊂ Spec(Â) such that (E, U) restricts to (En, U ′) in each F (A/mn). On morphisms the assertion
also follows from the main result of loc.cit. ¤

7 Properties of the diagonal

Lemma 13 Let G be a coherent sheaf on Xk, A a noetherian k-algebra and H a coherent sheaf on
XA. Then there exists a finitely generated A-module Q, unique up to canonical isomorphisms, and
a natural isomorphism of covariant functors (with argument M)

HomXA
(H, (G⊗k A)⊗A M) ' HomA(Q,M)

from the category of A-modules to itself.

Proof. First assume that Xk is projective. Since G ⊗k A is flat over A and H is a cokernel of a
morphism of locally free sheaves, the assertion is an immediate consequence of Corollary 7.7.8 in
[EGA III2].

For proper Xk we use the Chow lemma and the standard pattern of Section 5 in [EGA III1].
Fixing H, we will say that G is representable if a module Q as in the statement exists. Consider
an exact sequence if coherent sheaves on Xk:

0 → G1 → G2 → G3 → 0.

We claim that if G2, G3 are representable then G1 is, and if G1, G3 are representable then G2 is.
The first assertion is quite easy as the morphism G2 → G3 corresponds to the morphism Q3 → Q2

of representing A-modules and we can set Q1 = Coker(Q3 → Q2). For the second assertion we
first show that the functor M 7→ R(M) = HomXA

(H, (G ⊗k A) ⊗A M) commutes with projective
limits. In fact, choose an affine covering Xk = ∪Ui and compute R(M) as the kernel of the first
arrow in the corresponding Cech complex

⊕
i

Hom(Ui)A
(H, (G⊗k A)⊗A M) →

⊕

i6=j

Hom(Ui∩Uj)A
(H, (G⊗k A)⊗A M)

where we omits the notation for restriction of sheaves to Ui and Ui ∩ Uj, respectively. Since
projective limits are left exact and commute with Hom(H, ·) by universal property of projective
limits, it suffices to show that (G ⊗k A) ⊗A (·) commutes with projective limits, which is obvious
since the first tensor factor is free over A. By a theorem of Watts, [W], since R(M) is left exact
and commutes with projective limits, it is representable by an A-module Q: R(M) = HomA(Q,M)
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although in generalQ is not finitely generated. Now, if G1, G3 as above are represented by finitely
generated A-modules Q1, Q3 and G2 by an A-module Q2, the exact sequence of sheaves induces an
exact sequence of modules

Q1 → Q2 → Q3 → 0

and since Q1, Q3 are finitely generated, the same holds for Q2.
Now we prove the assertion for all proper separated Xk by induction on the dimension of

Supp(G) (as before, A and H are fixed). Choosing an appropriate closed subscheme in Xk we can

assume Supp(G) = Xk. Then applying Chow Lemma we find a projective subscheme X̃k over k

and a projective morpism h : X̃k → Xk which is an isomorphism over a dense open subset of Xk.
Let hA : X̃A → XA be the morphism obtained by base change Spec(A) → Spec(k). By adjunction

HomX̃A
(h∗AH, (h∗(G)⊗k A)⊗M) ' HomXA

(H, (h∗h∗(G)⊗k A)⊗M)

so the coherent sheaf h∗h∗(G) is representable. Since the kernel and the cokernel of φ : G →
h∗h∗(G) are zero on a dense open subset of Xk, by induction they are representable. Hence by
above argument Im(φ) = Ker(h∗h∗(G) → Coker(φ)) is representable and from the exact sequence
0 → Ker(φ) → G → Im(φ) → 0 the sheaf G is also representable, as required. ¤
Corollary 14 Let E be a vector bundle on U = XA \ Z with Z ∈ Φ(A) and Y → U a closed
subscheme in the total space of E over U . Then the functor Sec(Y/U) on (Aff/A) which sends
an A-algebra B to the set of sections UB = U ×A B → YB = Y ×A B is represented by an affine
scheme of finite type over A.

Proof. First we deal with Sec(E/U). By definition

Sec(E/U)(B) = HomOU−alg(Sym•(E∗),OU ⊗A B) = HomOU
(E∗,OU ⊗A B)

If j : U → XA is the open embedding, then by adjunction Hom(j∗(·), ·) = Hom(·, j∗(·)) and the
S2 condition we have

HomOU
(E∗,OU ⊗A B) = HomOXA

(j∗(E),OXA
⊗A B) = HomA(Q,B) = HomA−alg(Sym•

A(Q), B)

where the second equality holds for some finitely generated A-module Q by the previous lemma.
Thus Sec(E/U) is represented by Spec(Sym•

A(Q)).
For a closed subscheme Y we can find a OU -coherent subsheaf N of Sym•

OU
(E∗) which generates

the ideal subsheaf of Y as Sym•
OU

(E∗)-module, e.g. by following the pattern of Proposition 9.6.5 in
[EGA I]. A section s : UB → EB induces a homomorphism of OU -algebras Sym•

OU
(E∗) → OU ⊗A B

and s factors through YB precisely when the restriction φ : N → OU ⊗A B vanishes. Fixing a
coherent sheaf N ′ on XA which restricts to N we get an isomorphism

HomXA
(N ′,OXA

⊗B) ' HomU(N,OU ⊗A B)

which follows by adjunction of j∗, j∗ and j∗(OU ⊗A B) = OXA
⊗ B. By Lemma ?? there exists a

finitely generated A-module Q such that the above Hom groups can be identified with HomA(Q,B).
Denote the corresponding homomorphism Q → B by the same letter φ. Then for any B-algebra
B → B′ the induced section sB′ corresponds to the composition of φ : Q → B with B → B′. It
follows that sB′ factors through YB′ presicely when Ker(B → B′) contains the ideal generated by
φ(Q) ⊂ B. Therefore Sec(Y/U) is a closed subfunctor of Sec(E/U) and the assertion follows. ¤.
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Proposition 15 The diagonal of F is representable, quasi-compact and separated.

Proof. Although representability of the diagonal follows formally from the previou sresults, it is
useful to establish it directly: if S is an algebraic space then a morphism S → F×kF corresponds to
a pair of rank r bundles E1, E2 which we may assume to be defined on a common open subset XS\Z.
Then the fiber product with the diagonal is the functor of isomorphisms Isom(E1, E2). Although
such isomorphisms correspond to sections with values in an open subset of the vector bundle
Hom(E1, E2), the isomorphism condition is equivalent to the nonvanishing of the determinant,
i.e. the induced section of L = Hom(ΛrE1, Λ

rE2). Therefore the subscheme of isomorphisms is
isomorphic to the closed subscheme in the total space of Hom(E1, E2)⊕L∗, formed by all sections
(φ, s) such that det(φ)s = 1. Now Corollary 14 gives representability in the case when S is affine,
and uniqueness of the representing module Q from Lemma 13 in general case.

Quasi-compactness follows immediately from the fact that Isom(E1, E2) is affine over S.
By valuative criterion, cf. Theorem 7.3 in [LM-B], separatedness reduces to the following

fact: if R is a discrete valuation ring and (E1, U1), (E2, U2) two objects in F (R) then H0(U1 ∩
U2,Hom(E1, E2)) is torsion free. Denote U = U1 ∩ U2, E = Hom(E1, E2) and let t ∈ R be a local
parameter. Then we need to show that ts = 0 for s ∈ H0(U,E) implies s = 0. This question is
local on U hence we can assume that E is a trivial bundle and U = Spec(B), for a flat R-algebra

B. Then a short exact sequence 0 → R
t−→ R → K → 0 gives 0 → B

t−→ B → B ⊗R K → 0,
which proves the assertion. ¤

Remark. Observe that by Lemma 13 and the proof of Corollary 14, for any pair of bundles E, F
on U = XA \ Z the functor on A-modules, which sends M to HomU(E, F ⊗A M) is represented
by a finitely generated A-module Q, unique up to canonical isomorphism: HomU(E, F ⊗A M) '
HomA(Q,M). Glueing such representing modules and applying generic freeness one immediately
obtains an analogue of Proposition 2.2.3(i) in [Li] which eliminates further possible pathologies of
the diagonal morphism.

8 Representability of principal bundles.

Proof of Theorem 1. To prove that FGL(r) is an algebraic stack, locally of finite type and separated
over k, we just need to collect the results of the previous sections and compare with the conditions
of Artin’s representability criterion, cf. Theorem 5.3 in [Ar]. The “limit preserving” condition is
proved in Section 3, Schlessinger’s condition S1 in Section 4, while S2 is establihsed in Section 5.1.
Effectiveness (condition (2) of Artin’s criterion) is given by Section 3, while part (3) of loc.cit. is
proved in Section 5.2. Finally local quasi-separation (part (4) of Artin’s criterion) is established in
a stronger form in Section 7.

For a general reductive group G over k we use a result of Haboush, cf. [Ha], and choose an
exact finite dimensional representation ρ : G → GL(r) with Y = GL(r)/G affine. Moreover, Y is
isomorphic to a closed GL(r)-orbit of a vector in a finite dimensional rational GL(r)-module W .

Then each principal G-bundle P induces a principal GL(r)-bundle E = Pρ. Conversely, for any
principal GL(r)-bundle E over a scheme U its reduction of the structure group to G may be viewed
as a regular section U → YE = E ×GL(r) Y . Moreover, the scheme YE which is affine and flat over
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YE may be realized as a closed subscheme of a total space of a vector bundle WE on U , induced
from E via the homomorphism GL(r) → GL(W ).

This construction and Corollary 14 shows that the morphism FG → FGL(r) is representable in
the sense of Definition 3.9 in [LM-B] and since FGL(r) is an algebraic stack, by Proposition 4.5 (ii)
of loc.cit. F (G) is also an algebraic stack.

Alternatively, we can re-prove the results of Sections 3, 4 and 7 for FG by using the proved facts
for vector bundles and reducing the structure group from GL(r) to G. The Effectiveness property
of Section 6 is proved in [B] by a similar strategy. Finally, by Chapter VI of [I] the arguments of
Section 5 carry over to G after a minor modification. Let Ω(G) be the space of G-invariant (from
the right) differential forms on G, with the natural left G-action (in characetistic zero this is just
the adjoint representation). For any G-bundle P denote by ad(P ) the vector bundle induced from
P via the action homomorphism G → GL(Ω(G)). Then all arguments of Section 5 carry over
if Exti(End(E), ·) are replaced by Exti(ad(P ), ·) and H i(·, End(E)M) by H i(·, ad(P )∨M), where
ad(P )∨ stands for the dual bundle. This finishes the proof of Theorem 1. ¤

Remark. If we replace the “codimension 3” condition in the definition of Φ(T ) (see Section 1), by
“codimension 2”, the stack FG will not longer be algebraic. The most obvious reason is that the
tangent space H1

A0,Φ(End(E)) will no longer be finitely generated over A0. On the other hand, the
results of Sections 3, 4 and 7 remain valid while the Effectiveness of Section 6, which definitely fails
by itself, may be repaired introducing an additional condition as it is done in [B]. It is conjectured
by V. Drinfeld that in this case FG is an inductive limit of algebraic stacks, locally of finite type
over k. We plan to return to this topic, as well as the related Uhlenbeck functor, in future work.
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