## Introduction

Question: How many lines are there through two distinct points?
Answer: 1 (This is usually attributed to the Greeks.)
Question: A natural extension of this problem is to determine the number, $N_{d}$, of rational curves of degree $d$ passing through $3 d-1$ points in general position in the complex plane?
Answer: Not so easy!!
KNOWN UP TO 1990

1. $N_{1}=N_{2}=1$ (Antiquity)
2. $N_{3}=12$ (Steiner-1848)
3. $N_{4}=620$ (Zeuthen -1873)

The solution is surprisingly simple. It relies on two very basic mathematical properties.

1. $a \star(b \star c)=(a \star b) \star c$ (Associativity of a certain product.)
2. The fact that there is one line through two distinct points in the plane.

## WARNING

1. Mathematicians would more than likely not have been able to get such a solution without physics intervening.

## Topological Quantum Field Theory (TQFT)

## DEFInItion OF A TQFT

- To each closed oriented $d$-dimensional manifold $Y$ is associated a finitedimensional complex vector space $Z(Y)$. This vector behaves functorially under isomorphisms of $Y$.
- To each $(d+1)$-dimensional oriented manifold $X$ whose boundary $\partial X$ is a closed oriented $d$-dimensional manifold is associated an element $Z_{X} \in$ $Z(\partial X)$. This element behaves functorially under isomorphisms of $X$.
( $1+1$ )-dImENSIONAL TQFT We will describe ( $1+1$ )-dimensional TQFT using "pants" diagrams. Since there are only two 1-dimensional manifolds without boundary the description is easy. By definition we associate a complex vector space $\mathcal{H}=Z\left(S^{1}\right)$. For two elements $a, b \in \mathcal{H}$ we define $a \star b$ as:

We define a "3-point correlation" function by $\langle a, b, c\rangle=\langle a \star b, c\rangle$. We now claim that $\langle a \star b, c\rangle=\langle a, b \star c\rangle$. This also says that the product is associative i.e. $(a \star b) \star c=a \star(b \star c)$.


## Proof

Using an idea from physics we define a function on the cohomology of $\mathbb{P}^{2}$ by

$$
\Phi^{\mathbb{P}^{2}}\left(x_{0} T^{0}+x_{1} T^{1}+x_{2} T^{2}\right):=\frac{1}{2}\left(x_{0} x_{1}^{2}+x_{0}^{2} x_{2}\right)+\sum_{d=1}^{\infty} N_{d} \frac{x_{2}^{3 d-1}}{(3 d-1)!} e^{d x_{1}}
$$

where $T^{0}, T^{1}, T^{2}$ are the generators of the cohomology of $\mathbb{P}^{2}$. The first part of the equation is "classical"
Define a product on cohomology of $\mathbb{P}^{2}$

$$
T^{i} \star T^{j}=\sum_{e+f=2} \Phi_{i j e} T^{f}
$$

where

$$
\Phi_{i j e}:=\partial_{i} \partial_{j} \partial_{e} \Phi
$$

From here one easily checks that

1. $T^{1} \star T^{1}=T^{2}+\Phi_{111} T^{1}+\Phi_{112} T^{0}$
2. $T^{1} \star T^{2}=\Phi_{121} T^{1}+\Phi_{122} T^{0}$
3. $T^{2} \star T^{2}=\Phi_{221} T^{1}+\Phi_{222} T^{0}$

Theorem: The quantum product is associative. That is

$$
\left(T^{i} \star T^{j}\right) \star T^{k}=T^{i} \star\left(T^{j} \star T^{k}\right)
$$

There are only two non-trivial associativity relations:

$$
\left(T^{1} \star T^{1}\right) \star T^{2}=T^{1} \star\left(T^{1} \star T^{2}\right)
$$

and

$$
\left(T^{1} \star T^{2}\right) \star T^{2}=T^{1} \star\left(T^{2} \star T^{2}\right)
$$

Working out the first associativity equation gives:
$\left(T^{1} \star T^{1}\right) \star T^{2}=\Phi_{221} T^{1}+\Phi_{222} T^{0}+\Phi_{111}\left(\Phi_{121} T^{1}+\Phi_{122} T^{0}\right)+\Phi_{112} T^{2}$ while

$$
T^{1} \star\left(T^{1} \star T^{2}\right)=\Phi_{121}\left(T^{2}+\Phi_{111} T^{1}+\Phi_{112} T^{0}\right)+\Phi_{122} T^{1}
$$

By the Theorem above the two equations must be equal. Therefore the $T^{0}$ terms must be equal. Hence

$$
\Phi_{222}+\Phi_{111} \Phi_{122}=\Phi_{112} \Phi_{112}
$$

This equation is known as the WDVV equation. Plugging $\Phi$ from above into this equation and rearranging the terms finally yields

$$
N_{d}=\sum_{d_{A}+d_{B}=d} N_{d_{A}} N_{d_{B}} d_{A}^{2} d_{B}\left(d_{B}\binom{3 d-4}{3 d_{A}-2}-d_{A}\binom{3 d-4}{3 d_{A}-1}\right)
$$

We get new numbers: $N_{5}=87,304, N_{6}=26,312,976, N_{7}=14,616,808,192$ WhY this is so Beautiful!!

- The problem was easy to state.
- The answer is easy to understand, they are natural numbers!!!
- The problem that resisted a century of investigation is reduced to the number of lines through two distinct points, $N_{1}=1$.

