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1. Introduction27

Numerous models of cognitive processes have been developed over the decades, varying in detail28

and complexity from neuro-physiological models (Brunel and Wang, 2001; Albantakis and Deco,29

2009) to high level models (Ratcliff, 1978; Usher and McClelland, 2001; Brown and Heathcote,30

2008). A central benefit of modelling over experimentation alone is the ability to translate formal31

theories into testable predictions. Subsequent testing can be performed in a number of ways. In32

more detailed models, qualitative comparisons between model and data are often made to determine33

if the theory can account for the qualitative trends observed in data. While such comparisons can34

quickly refute a theory, they can rarely provide more than weak support. Higher level models on the35

other hand are typically tractable enough for quantitative comparisons against data. This typically36

involves “fitting” a model to data and estimating the values of model parameters. Quantitative37

methods provide two distinct benefits. First, quantitative measures provide a more fine grained38

account of how well a theory accounts for observations. Second, access to parameter values and39

their uncertainty provides further inferences about underlying behaviour.40

Historically, parameters have been estimated using linear programming methods (Dantzig and41

Thapa, 1997) designed to minimize some statistic such as sum squared error. This frequentist42

approach however provides no information about estimation uncertainty. For this reason, these43

methods are often supplemented with some form of sensitivity analysis (Saltelli et al., 2008). More44

recently however, following algorithmic improvements and computing advances, Bayesian methods45

have moved to the forefront. These have a number of powerful benefits (Abelson, 2008; Gallistel,46

2009; Lee, 2008; Lee and Wagenmakers, 2013) which are beyond the scope of this article, but in short47

they provide a more principled way to account for uncertainty and incorporate prior knowledge.48

Numerous methods for performing Bayesian analysis have been devised. Standard Markov49

Chain Monte Carlo (MCMC) techniques (Gelman et al., 2003; Robert and Casella, 2004; Cappé50

et al., 2004; Del Moral et al., 2006) have proven very powerful, but can only be applied to the51

simplest problems where a model can be analytically described by a closed form probability den-52

sity function. Other approximate Bayesian computation (ABC) methods have been developed to53

circumvent this requirement (Csilléry et al., 2010; Turner and Van Zandt, 2012). Unfortunately54

they have a number of downsides, particularly that in most cases they do not actually estimate pa-55

rameters of the desired model (see below for further discussion). Recently, a new method, referred56

to here as a non-parameteric ABC method (or npABC), was developed (Turner and Sederberg,57

2014) that bridges the gap between these exact and approximate methods, alleviating some of58

these issues.59

The goals of this article are three fold: 1) describe this new methodology in detail and determine60

its strengths, weaknesses, and limitations, 2) improve upon it, and 3) present it in an accessible61

way so it can be utilized by a broader audience of end users. In particular, toward this third62

goal, a number of examples of this method are presented along with documented MATLAB code63

for two of the examples. This is not intended as a “plug in” software package, but rather to aid64

implementation of this method by others. Also toward this goal, a detailed procedural overview of65

this method (with improvements presented here) is provided in Section 4.66
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1.1. Brief introduction to Bayesian methods67

The canonical Bayesian model estimation problem is to determine the posterior probability
distribution of a set of model parameters conditioned on observed data π(θ|X). This typically
involves three critical steps. First, a prior distribution on the parameters π(θ), which encodes
pre-existing knowledge of the system, must be supplied. This is rarely a problem as some form
of subjective prior belief is typically available from which a prior can be constructed. Second, a
probability density (aka. likelihood) function L(X|θ), which describes the likelihood that the model
will give rise to the observed data given the parameters θ, must be computed. When observations
are identical and independently distributed, this reduces to

L(X|θ) =
I∏

i=1

Li(θ),

where Li(θ) := L(xi|θ), so only the likelihood of each individual observation is required. The68

following exposition will be confined to this simplified setting. Third, with these model components69

provided, the models posterior distribution is computed via Bayes’ theorem70

π(θ|X) =
L(θ|X)π(θ)∫
L(θ|X)π(θ)

. (1.1)

In almost all practical situations, this third step is impossible to perform analytically since the71

required integral is usually not solvable. For this reason, numerous MCMC methods have been72

developed to circumvent this third step.73

In many cases however, the second step is problematic as well since the model may either 1) not74

emit an analytic density function or 2) emit one that is too cumbersome to compute. Approximate75

Bayesian computation methods have been developed to deal with this difficulty, see (Csilléry et al.,76

2010; Turner and Van Zandt, 2012) for existing reviews. Generally speaking, ABC deals with the77

absence of a likelihood by prescribing a surrogate measure for how likely or plausible a particular78

parameter set (θ) is. To accomplish this, a large number of simulated data observations (X̃) are79

drawn from the model. The observed (X) and simulated (X̃) data are then compared in some80

way to determine how likely that parameter set is. Typically this comparison is accomplished by81

compressing both data sets into a set of summary statistics S(X) and then defining a “distance”82

between them ρ(S(X), S(X̃)).83

This method raises two distinct issues. First, a reasonable distance function ρ(·, ·) must be84

prescribed. A more serious issue however is that the summary statistics must adequately represent85

the models output, often referred to as a sufficiency condition. ABC methods do not approximate86

the models posterior π(θ|X), but rather a posterior augmented by the choice of S, π(θ|S(X)). So87

ABC only estimates the posterior distribution of the intended model if π(θ|S(X)) = π(θ|X), which88

is often not possible to verify. The essential problem here is that the use of summary statistics89

force assumptions on the structure of the underlying likelihood function, which if inaccurate lead to90

potentially serious errors (Robert et al., 2011) that no amount of computational effort will correct.91

As an extreme example, using mean and variance as summary statistics to describe a distribution92

implies a normality assumption, which could be very poor if the underlying model is multimodal or93
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heavily skewed. In a more cognitive context, choice response time distributions are often described94

by quantile summary statistics (Heathcote et al., 2002; Ratcliff and Tuerlinckx, 2002; Heathcote95

and Brown, 2004). This was however recently shown to be an insufficient summary of the data96

(Turner and Sederberg, 2014), leading to substantial posterior inaccuracies.97

In the broader statistics field, such issues have been overcome through the development of “non-98

parametric statistical” methods, which free the user from having to make potentially erroneous99

assumptions (e.g. summary statistics) on the structure of their data / model. Recently, non-100

parametric methods have been incorporated into the ABC context (Turner and Sederberg, 2014)101

to improve Bayesian estimation methods (e.g. npABC). These methods begin the same way as102

canonical ABC by first simulating a large number of samples from the underlying distribution.103

Next however, they construct an approximation of the underlying likelihood L̂(X|θ). In this case,104

no summary statistics are prescribed and much weaker assumptions on the structure of L(X|θ) are105

made. The approximate likelihood is then substituted (L→ L̂) into the chosen MCMC framework106

and an approximate posterior is determined.107

In the following sections, the implementation details required to apply this method will be108

discussed. First, the “kernel density estimate” (or KDE), which is the core of the likelihood109

estimation, is described. An improvement of this method that yields substantial efficiency gains110

over that in (Turner and Sederberg, 2014) is also provided. Second, the influence of likelihood111

estimation errors on posterior estimation and MCMC efficiency will be discussed from a theoretical112

perspective. Third, the full npABC will be demonstrated through three examples of increasing113

complexity. Using these examples, the strengths and weaknesses of the method will be described.114

Finally, a stand alone section (4) describing the core implementation steps of this method is provided115

for the user interested primarily in implementing this method.116

2. Methods117

2.1. The kernel density estimate118

The critical step in npABC is the construction of the approximate likelihood L̂(X|θ) that will119

replace L in canonical MCMC estimation. The kernel density estimate (KDE) is a powerful tool120

for doing just this (Silverman, 1982, 1986; Epanechnikov, 1969). The first step in this process is121

to simulate Ns draws (X̃) from Model(θ). This step is of course dependent on the model under122

consideration, which will dictate how these samples are produced. The second and final step is to123

use kernel density estimation (KDE) to extract likelihood estimates for the observed data X from124

the simulated X̃. For purposes of generality, the KDE process will first be discussed independent125

of posterior estimation.126

The basic problem is to estimate the probability density f(xi) (a placeholder for Li(θ)) of each127

individual observation xi from the samples X̃ = {x̃j}, where j = 1...Ns. The KDE of this quantity128

is given by129

f(xi) ≈ f̂(xi) :=
1
Ns

Ns∑
j=1

Kh(xi − x̃j). (2.1)

From here on theˆwill reference a kernel density estimate of the underlying likelihood, or a quantity

4



derived from it. Here Kh is a “smoothing kernel” defined by

Kh(z) =
1
h
K
( z
h

)
,

where K is a continuous function that is symmetric about z = 0 and integrates to 1. The parameter130

h, commonly referred to as a “bandwidth” size, determines the smoothing properties of the kernel:131

large h heavily smoothes the sampled data while small h provides less smoothing. To illustrate this,132

consider the uniform kernel K(z) = χ[−0.5,0.5](z) where χ is the standard indicator function that133

is one on the prescribed interval and zero elsewhere. This kernel produces a standard histogram134

estimator with h corresponding to the size of the histogram bins. Histograms with small bins (i.e.135

small h) of course produce noisy plots while those with large bins produce smoother but less refined136

plots. See (Silverman, 1986; Epanechnikov, 1969) for a full review of KDE theory.137

There are a few critical properties of the KDE estimator relevant to this discussion. f̂ is an138

approximation to f and as such can be thought of as an estimator with some underlying distribution.139

For the standard class of first order kernel functions (e.g. biweight, Gaussian, Epanechnikov, etc.),140

this distribution is approximately normal with intrinsic bias and variance141

Bias(f̂(x)) ≈ h2

2
f

′′
(x)M2(K), V ar(f̂(x)) ≈ 1

Nsh
f(x)‖K‖2, (2.2)

where M2(K) and ‖K‖2 denote the second moment and Euclidean (or L2) norm of K respectively142

(Silverman, 1986). From these estimates we see that the bandwidth, number of samples, and143

specific choice of K all affect accuracy of this approximation. In practice, the specific choice of K144

has only marginal effects on accuracy, though the Epanechnikov kernel is known to minimize mean145

integrated square error (Epanechnikov, 1969). The bandwidth (h) and number of samples (Ns)146

however are of critical importance and will each have different effects on the posterior estimation147

process. For now, simply note that Ns plays a role in variance control while h modulates a classic148

bias-variance tradeoff.149

2.1.1. An improved, more efficient KDE implementation150

Before discussing the influences of this approximation procedure on posterior estimation, I will151

discuss a technical improvement on the classic implementation of KDE that substantially speeds152

computational implementation of npABC. Before continuing with this section however, note that153

it is technical in nature. This improved procedure has the same accuracy, the same bias / variance154

issues as the standard KDE procedure, and will lead to the same results as the standard KDE155

when embedded into the npABC procedure. This improvement does however substantially improve156

efficiency for reasons that will be discussed.157

Direct computation of f̂ from Equ. (2.1), while simple, is inefficient. Given a set of Nd observa-158

tions, the kernel function must be evaluated Ns ·Nd times. While a single evaluation of this size is159

reasonable, this becomes a computational bottle neck in MCMC applications where the likelihood160

must be evaluated at many chain iterations. The improvement presented here, first proposed in161

(Silverman, 1982), takes advantage of the observation that the KDE formula in Equ. (2.1) resembles162
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a convolution. The discrete model samples X̃ can be represented by the following function163

d(x) =
1
Ns

Ns∑
j=1

δx̃j (x), (2.3)

where δ is the Dirac delta function. It is then direct to show that164

d ? Kh(x) =
1
Ns

Ns∑
j=1

Kh(x− x̃j), (2.4)

where ? denotes the standard convolution. This is precisely the KDE formula in Equ. (2.1). The165

KDE thus resembles a canonical smoothing operation (with K as the smoother), proposed as early166

as 1944 in partial differential equations literature (Friedrichs, 1944).167

While convolutions are well know to be intensive to compute directly, this burden can be168

greatly reduced by making use of techniques from signal processing theory, where convolutions are169

common. The “convolution theorem” states that F(f ?g) = F(f) ·F(g), where F is the continuous170

Fourier transform. Since multiplication is much more efficient than convolution, the basic idea171

of this method is to transform both d and Kh into the spectral domain, multiply in the spectral172

domain (which effectively is the convolution), then transform back. Given the high efficiency of Fast173

Fourier Transform methods (FFT), transferring to and from the spectral domain is fast relative to174

the convolution. This was originally proposed as an efficient method for generating a high resolution175

PDF on a regular grid, particularly for plotting purposes. Likelihood values of observations can176

however readily be interpolated from this regular grid.177

There is a technical point that must be addressed before applying this method; the FFT is only178

efficient if the data being transformed is on an regular grid, which is not the case for the samples179

{x̃j}. To circumvent this, the samples should first be binned to a very fine grid with 2n points (a180

power of 2 is used for technical reasons related to FFT efficiency). This grid should be much more181

finely spaced (n > 8 typically) than a typical histogram grid for reasons discussed in a moment.182

The improved FFT based KDE procedure is then as follows:183

1. Bin the simulated samples to a very fine grid, d→ d̃.184

2. Transform the resulting data to the spectral domain (d̃(x) → F [d̃](s)) using a FFT (where185

F [d̃](s) is the contribution of wave number s, i.e. the frequency spectrum of d̃).186

3. Carry out the convolution operation in the spectral domain187

F [d̃ ? Kh](s) = F [d̃](s) · F [Kh](s). (2.5)

4. Using an inverse FFT, transform the resulting expression back to obtain the likelihood esti-188

mate on the same 2n grid189

f̂ = F−1
(
F [d̃] · F [Kh]

)
(2.6)

5. Interpolate the density from this grid to the observed data points to obtain f̂(xi). Linear190

interpolation should be used here since higher order methods (such as cubic splines) can191

generate negative likelihood values in the tail of a distribution.192
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Since FFT, multiplication, and interpolation are each highly efficient and usually optimized within193

programming languages, this procedure is vastly more efficient than direct computation of the194

convolution.195

A few notes about this procedure are in order. First, the FFT itself introduces some errors196

into the approximation, but these are orders of magnitude smaller than the primary error sources.197

Second, the binning and interpolation steps will introduce errors as well. However these will198

again be very small provided n > 8 (n = 10 is used in all following applications). Third, in199

principal, any kernel (K) can still be used in this process. However the canonical Gaussian kernel200

is particularly useful in this case since its Fourier transform is another Gaussian, F [Kh](s) ∝201

exp(−0.5h2s2). Fourth, one must be careful when applying FFT’s since various operations (scalings,202

shifts, etc.) must be performed to correctly prepare the data. Such details are not mentioned here203

as they are specific to programming language and the FFT implementation being called. Instead,204

supplementary files that demonstrate implementation in MATLAB are provided.205

It also interesting to note that this view of the kernel density estimate is somewhat of a math-206

ematical departure from the original view. In its original form, the KDE was essentially designed207

as an extension of the histogram to be a method of pooling information from nearby samples in a208

weighted manner to make a more accurate density estimate. This procedure however more closely209

resembles filtering of a noisy signal to determine the underlying “true” trend. In this way, the210

transformed function F [Kh] acts as a low pass filter in the spectral domain that attenuates high211

frequency noise. To illustrate this, and more generally how this procedure works, consider the212

following simple example.213

2.1.2. Example 1: Reconstructing a Gaussian distribution214

In this section, the KDE procedure is demonstrated through a simple example. We begin with a215

known normal distribution with known mean (µ = 5) and variance (σ = 1). Next, this FFT based216

KDE procedure is used to reconstruct the underlying distribution from Ns = 10, 000 simulated217

draws. The binning of these Ns observations to 210 grid points yields a very noisy distribution218

(Figure 1a, grey). Application of the spectral filter (e.g. the smoothing step) attenuates the219

high frequency noise, revealing a smoothed normal distribution that agrees well with the exact220

distribution (Figure 1a, black).221

To test the accuracy of log likelihood estimation, which is critical in MCMC applications, a fixed222

set of Nd = 1, 000 “observations” from the known normal are drawn as a synthetic data set. Then,223

100 independent reconstructions of this normal are performed, with the resulting approximate log224

likelihood computed. Results show the mean error in this example is 0.3% with a maximum error225

of 0.8%.226

This example also demonstrates the critical effect of the bandwidth parameter (h) on the like-227

lihood construction (Figure 1b). Recall that small bandwidths produce a less biased but higher228

variance estimate while larger bandwidths produce lower variance but higher bias. These results229

confirm this tradeoff and indicate the source of the increased bias at higher bandwidths. Specifically,230

with larger bandwidths, the peak of the distribution is attenuated and the tails are overestimated,231

due to over-smoothing. Essentially mass from the peak of the PDF is transferred to the tail in232

the smoothing process. For this reason, the bandwidth must be chosen carefully so that it is small233

enough to account for the most refined feature of the model / data but still large enough to pro-234
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duce a reliable estimate. When likelihood distributions are nearly normal, automated bandwidth235

determination methods can choose nearly optimal values (Silverman, 1986), however these auto-236

mated methods can lead to poor results when distributions are more complicated (multi-modal for237

example, see the next example).238

2.2. npABC: Incorporating the KDE into ABC239

The above sections describe a manner of approximating the likelihood L(X|θ). This however is240

only an approximation and it is important to ask the question, how do inevitable errors influence241

the MCMC procedure and posterior estimation. In this section, I will discuss critical points that242

must be considered when embedding KDE in a Bayesian MCMC framework. The primary results243

of this section are as follows. 1) Small likelihood estimation errors will inevitably propagate into244

small posterior errors. While this will in many cases have little effect on parameter estimation,245

these small errors can have dramatic effects on hypothesis testing and model comparison through246

the use of AIC, BIC, or DIC. 2) Variance in the KDE approximation influences Metropolis-Hastings247

acceptance probabilities in a manner that substantially degrades MCMC chain mixing. While a248

rigorous characterization of these points in a general setting is likely very difficult and beyond the249

scope of this article, I will first outline the theoretical reasoning behind each and subsequently250

demonstrate them through simple examples.251

2.2.1. The influence of KDE on likelihood estimation252

The likelihood L(X|θ) and choice of priors fully determine the posterior distribution for a model.253

In the context here however, we only have access to the approximate likelihood obtained as254

L̂(X|θ) =
Nd∏
i=1

L̂i(θ), (2.7)

which is itself a stochastic quantity. Define the estimation error for the likelihood of observation i255

as256

εi = L̂i − Li, (2.8)

where for brevity, the dependence on θ has been omitted. The following relation then connects the257

approximate and true likelihood258

L̂ :=
Nd∏
i=1

L̂i = L

Nd∏
i=1

(
1 +

εi
Li

)
. (2.9)

From Equ. (2.2), we know that 1 + εi/Li ∼ N(1 + µi, σi) where259

µi =
h2

2
M2(K)

L
′′
i

Li
, σ2

i =
‖K‖2
Nsh

, (2.10)
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and L
′′
i = L

′′
(xi|θ). Using basic facts about normal distributions, we know that the product of260

independent normals is again normal so that261

L̂

L
∼ N(µ1...Nd

, σ1...Nd
), (2.11a)

where262

µ1...Nd
= 1+ < µi >, σ2

1...Nd
=
‖K‖2
NdNsh

, (2.11b)

and < µi > is the mean of the set {µi}.263

Unfortunately these quantities are not rigorous quantitative estimates of the mean and variance264

of the likelihood ratio and cannot be used to make post hoc error estimates. A critical assumption in265

this derivation was that {εi} are uncorrelated, which is not the case here since the density estimation266

of two nearby points will pool information from common samples. Nonetheless, these expressions267

provide valuable insights into the scaling behavior of the bulk mean and variance. In particular,268

the same bias variance tradeoff we saw in the estimate of an individual likelihood appears in the269

estimate of the full likelihood. So again, a tradeoff must be made between accuracy and precision270

of the estimate. Similarly, increasing the number of samples Ns drawn for estimation does not271

improve accuracy, but instead decreases the estimation variance and improves precision.272

2.2.2. Influence of the KDE on model comparison statistics273

Most common measures used for model comparison (except Bayes Factors) utilize values of the274

log likelihood LL(X|θ) (AIC, BIC, DIC). Thus, likelihood estimation errors will influence these275

model comparison statistics. To see this, note that276

L̂L(X|θ)− LL(X|θ) =
Nd∑
i=1

L̂L(xi|θ)− LL(xi|θ) ≈
Nd∑
i=1

εi
Li
, (2.12)

where εi, Li are as above and the approximation results from a Taylor expansion of the log function277

near 1 (assuming εi/Li is small). We thus see that small relative errors in the approximate likelihood278

of each individual observation translate directly into small relative errors in the log likelihood.279

While these errors are small in a relative sense, they raise a substantial problem from a model280

comparison standpoint. Model comparison tests will often use differences in these statistics of as281

little as ∆DIC = 10 to conclude evidence for or against a model. However, log likelihoods and in282

turn DIC values are often on the order of 100−1000. So these small relative errors in LL can easily283

be larger than the differential commonly taken as “significant”. For this reason, care should be284

taken when using these measures for model comparison in this or any context where approximations285

are used. Examples in subsequent sections will further elucidate this issue.286

Also note that, in contrast to estimates in the previous section, this estimate provides a quanti-287

tative approximation of the estimation bias being made. In particular, from Equ. (2.12) it is direct288

to show that289

E
(
L̂L(X|θ)− LL(X|θ)

)
≈

Nd∑
i=1

µi

Li
=
h2

2
M2(K)

Nd∑
i=1

L
′′
i

Li
, (2.13)
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which can be used for post hoc estimates of the expected error. Unfortunately an estimate of the290

underlying variance cannot be obtained, again because {εi} are not independent. However, if such291

an estimate is required, both the bias and variance of this estimate for any particular parameter292

set (the mean of the posterior for example) can easily be assessed through repeated simulation.293

2.2.3. Influence of the KDE on rejection rates294

A critical quantity in any MCMC procedure is the Metropolis-Hastings probability (αn) of295

accepting a parameter set θn at the nth chain iteration, defined as296

αn =
L(X|θn)π(θn)

L(X|θn−1)π(θn−1)
. (2.14)

Given this procedure provides only an estimate of L(X|θn), this quantity will be stochastic as well.297

While a simple description of the density for this quantity is not available, some intuition into the298

influence of the KDE on it is possible. Define rn = (L̂n − Ln)/Ln to be the relative sample error299

between the exact and approximated likelihood values. Note this quantity is distinct from εi, which300

is the absolute error in the approximate likelihood of observation i, where this is the relative error301

in the full approximate likelihood. Then it is direct to show that302

α̂n

αn
=

1 + rn

1 + rn−1
, (2.15)

where α̂ is obtained by substituting the likelihood estimate for the true value.303

This raises the practical problem for MCMC efficiency. Suppose L̂n is an overly optimistic304

estimate of the likelihood of Ln so that rn > 0. This over estimate will increase the probability305

of accepting this particular chain iteration. However, since this over estimate enters into the306

acceptance probability of subsequent chain iterations, it will reduce the acceptance probability of307

every subsequent iteration of that chain until a new parameter set is accepted. If rn is fairly near308

0, this will likely only have a marginal effect on the time spent by that chain at the current state.309

However, if it departs significantly from 0, a significant number of chain iterations will be required310

to displace it, causing chains to stagnate and impairing exploration of parameter space.311

This issue is exacerbated by the fact that the next acceptance in that chain is likely to result312

from yet another over estimation. Generally speaking, this process will lead to a net increase313

in rn as n increases due to acceptance being influenced by the variance. Underestimates will314

rarely be accepted and quickly discarded, while overestimates are more likely to be accepted and315

rarely discarded. Performance will thus be further degraded and posterior estimates might become316

skewed. This issue will be demonstrated through practical examples in subsequent sections and an317

augmentation of the standard MCMC to correct this deficiency will be discussed.318

3. Results319

The capabilities of this method will next be demonstrated through three examples of increasing320

complexity. In the first, a bimodal posterior will be fit to demonstrate the substantial effects the321

bandwidth parameter h can have on accuracy. Second, a canonical response time model in decision322
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making will be fit using this method. Finally, a third example will be presented where standard323

ABC methods based on summary statistics are insufficient for posterior estimation.324

3.1. Example 2: Fitting a mixture of Gaussians distribution325

In this first example, the npABC algorithm is used to estimate the posterior of a mixture model326

X ∼ (1− p)N(µ1, σ) + pN(µ2, σ), (3.1)

where N indicates the normal distribution and p is a weighting parameter indicating the probability327

that an observation is derived from the normal centred at µ2. Mixture models are common in a328

number of applications where transitioning between discrete strategies might occur. For example329

participants might transition between actively participating in a task and simply guessing or may330

follow instructions in some instances while disregarding them in others (Cassey et al., 2014; Ollman,331

1966; Yellott Jr, 1967, 1971; Yantis et al., 1991; Vandekerckhove and Tuerlinckx, 2007).332

We begin by creating a data set with Nd = 1, 000 simulated observations drawn from this333

distribution with p = 0.6, µ1 = −6, µ2 = 4, σ = 1. Next, the following prior distributions for the334

parameters are prescribed335

p ∼ U(0, 1), µ1 ∼ U(−10, 0), µ2, σ ∼ U(0, 10), (3.2)

where U(a, b) indicates the uniform distribution on the interval [a, b]. For a simple model such as336

this, any standard MCMC procedure should be sufficient. Since subsequent examples require337

more sophisticated techniques though, a differential evolution MCMC procedure (DE-MCMC)338

(Ter Braak, 2006; Storn and Price, 1997; Turner et al., 2013) is used for consistency. For all339

simulations of this model, 15 chains are propagated for 500 burn in iterations followed by 2000340

recorded iterations. All that is left now is to specify the density estimation parameters Ns and h.341

Rather than specify a single set of KDE parameters, different combinations of Ns and h are used342

to determine the influence of these parameters on results.343

3.1.1. Example 2: Results344

As discussed previously, h mediates a bias variance tradeoff. To determine how this parameter345

effects posteriors, the model is fit to data for different values of h. Figure 2a shows the posterior346

distribution for (µ1, µ2) for two values of h, where Silv indicates the value derived by “Silverman’s347

rule of thumb” (Silverman, 1986)348

h = 1.06σ̄N−0.2
s . (3.3)

Here, σ̄ is the sample variance of the data, and for Ns = 10, 000 is h = 0.67. These results show349

that posterior estimates are visually identical for the two values. This however is misleading. To350

investigate the influence of h further, 1) the quality of posterior model fit to the data and 2) the351

computed log likelihood were determined by comparing to the analytic solution, Figure 2b.352

In this figure, the mean parameter values from the posterior for each value of h were used353

to construct the likelihood. These values are effectively identical, differing by < 0.1% between354

the two simulations. Yet, when the model’s PDF is constructed from these parameter sets, we355

see significant deviation of the h = Silv case from the analytic solution while h = 0.2 faithfully356
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captures the analytic solution. This results from over-smoothing of the density in the h = Silv357

case, since the underlying distribution is bimodal. Essentially, the smoothing kernel is too broad, so358

when it is applied to smooth the simulated PDF, the peak of the distribution is attenuated leading359

to fatter tails.360

These results also show the choice of h influences log likelihood estimates. While the difference361

between the computed and actual log likelihood is small in a relative sense (∼ 2% for h = Silv), it362

is still relatively large in an absolute sense (∼ 38). This raises a substantial problem for hypothesis363

testing and model comparison based on AIC, BIC, and DIC, all of which rely on log likelihoods. It364

is important to remember however that this is a problem with ABC in general since the posterior365

being estimated is always only an approximation of the actual posterior.366

To further determine the extent to which small posterior errors influence these statistics, DIC367

was computed for different pairings of (Ns, h). For each, 100 independent posterior estimation368

simulations were performed (all on the same synthetic data set), and the mean and standard369

deviation of the DIC computed from those simulations is shown, Figure 2c. While even the worst370

model fit (Ns = 5, 000, h = 0.8) leads to a relative DIC error of < 2%, the resulting absolute DIC371

error is > 200. Given that DIC differences between different models of as little as ∆DIC = 10372

is often taken as strong evidence for a particular model, clearly these small relative errors can373

overwhelm standard hypothesis tests.374

3.1.2. The influence of the bias-variance tradeoff375

These results (Figure 2c) also further illustrate the influence of h (and the bias variance tradeoff376

it mediates) on results. Broadly speaking, as h increases, error in the DIC increases as well, largely377

independent of Ns which has no influence on estimation bias. Further, as h decreases, the DIC378

error decreases while the DIC variance increases. This is consistent with the fact that increasing379

h reduces estimation variance but increases estimation bias. Thus the MCMC procedure does not380

abrogate this tradeoff and h should be chosen carefully. Unfortunately there is no universal way381

of choosing this value and for example, the Silverman value is usually too large for multimodal382

distributions and too small for heavy tailed distributions. Thus some trial and error is required for383

choosing this bandwidth.384

There is one last point to consider here. Recall from the previous section that variability in the385

likelihood estimation is hypothesized to impair MCMC performance by causing chains to get stuck386

when a likelihood is significantly overestimated. To determine the extent of this problem, proposal387

acceptance rates as a function of Ns and h are computed, Figure 2d. Again, 100 independent388

simulations of the posterior are used for each KDE parameter set. Results show a clear decrease in389

the acceptance rate as the number of samples Ns decreases, consistent with the supposition that390

likelihood variability leads to poor MCMC performance. One way to ameliorate this issue is to391

simply increase the number of samples used for estimation. In many cases however this will not be392

possible for performance reasons. In the next example, an alternative correction that ameliorates393

this performance issue is presented.394

3.2. Example 3: Fitting the Linear Ballistic Accumulator (LBA)395

In this example, the canonical Linear Ballistic Accumulator (LBA) model (Brown and Heath-396

cote, 2008) is considered as an example of a large of class of evidence accumulation models in397
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decision making literature. A number of accumulator models, including Ratcliff’s drift diffusion398

model (Ratcliff, 1978; Ratcliff and Rouder, 1998), the leaky competing accumulator (Usher and399

McClelland, 2001), the ballistic accumulator (Brown and Heathcote, 2005), and decision field the-400

ory (Busemeyer and Townsend, 1993), have been developed over the years to account for different401

aspects of decision making. What differentiates the LBA from the other models, is that evidence402

accumulation for different choice alternatives are independent, linear, and deterministic. This sim-403

plicity allows for a closed form solution for the simplest settings. However as will be discussed in404

the next example, even simple variations of this model make it impossible to obtain a tractable405

likelihood function. This example will thus be used to demonstrate the potential power of these406

methods in response time modelling. A brief description of this model will be provided and the407

interested reader can find further details in (Brown and Heathcote, 2008).408

The basic assumptions of the LBA are that following the presentation of information, evidence409

for each of a set of choice alternatives accumulates linearly and deterministically until an evidence410

threshold b is reached. The rate of evidence accumulation for choice alternative i, given by vi, is411

assumed to be fixed within a trial (this is the deterministic assumption) but to vary among trials.412

This rate is sampled from an underlying normal distribution vi ∼ N(µi, σ), while the start point413

x0,i for the ith accumulator, which is also assumed to vary across trials, is uniformly distributed414

x0,i ∼ U(0, A). Additionally, a non-decision time τer is included to account for encoding and motor415

response delays. This simplest LBA variant is thus fully parameterized by the parameters b, A, σ, τer416

and the collection of mean drift rates {µi}. The likelihood L(ci, τi|θ) of a option ci being chosen at417

time τi can then be described by an analytic function (Brown and Heathcote, 2005).418

This method will be used to perform parameter recovery, as was done previously in (Turner and419

Sederberg, 2014), and assess the properties of this method in a cognitive modelling context. To420

begin, a synthetic data set for a two choice experiment, consisting of Nd = 1, 000 observations, is421

created by simulating Nd trials with A = 1.6, b = 2.7, µ1 = 3.4, µ2 = 2.1, τer = 0.1. The canonical422

assumption σ = 1 is further made to identify the model. To place the model in a Bayesian423

framework, the following priors on the parameters are further prescribed424

b, A ∼ U(0, 10), µ1, µ2 ∼ U(−10, 10), τer ∼ U(0, 1). (3.4)

The same differential evolution MCMC procedure used previously is used here as well, again with425

15 chains, a 500 iteration burn in, and 2000 recorded chain iterations.426

3.2.1. Example 3: Results427

The posterior of this model is fit both analytically and using this FFT based npABC procedure.428

Again, for each combination of (Ns, h), 100 independent fits are performed to determine how429

estimation variability influences various quantities, Figure 3. For all but the largest value of h,430

the posterior estimated by the two methods was visually indistinguishable, and so they are not431

shown. Panel a shows the quality of fit for the two methods, analytic MCMC and npABC (using432

Ns = 10, 000 and h = Silv where Silv again indicates h = 0.028 was chosen according to Silverman’s433

rule of thumb). In each case, the mean value of the parameters from the associated posterior were434

determined and the PDF was constructed from those values. The resulting PDF’s are virtually435

indistinguishable and in this case, the log likelihoods are very close.436
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Again however, we see that small errors propagate into the DIC measure, Figure 3b. For all437

but the worst case fits (h = 0.07), the relative DIC error is ∼ 1− 2%. This translates into absolute438

errors of ∆DIC ∼ 10 − 20, which will again have a strong influence on model comparison. We439

again see that Ns has effectively no influence on the DIC error. This along with results from the440

previous example confirms that errors cannot be reduced by increasing the number of samples used441

in the likelihood reconstruction. Only reductions in h can improve posterior estimates.442

We also again see a problem with acceptance rates, Figure 3c, which generally decrease when443

either Ns or h decreases (black dots). Further recall that both of these parameter changes lead to444

increased likelihood estimation variance. These results are thus again consistent with the fact that445

increased estimation variance reduces acceptance rates and hence MCMC efficiency. In particular,446

the acceptance rate for this procedure with Ns = 10, 000, h = Silv (which are the same estimation447

parameters used in (Turner and Sederberg, 2014)) is only ∼ 6%. Fortunately, this can be amelio-448

rated to a significant extent with a minor augmentation of the MCMC procedure and a little more449

computation.450

3.2.2. Resampled MCMC for npABC451

The central problem that leads to chain stagnation and poor performance is that the likelihood452

of a particular parameter set θn can, on a rare occasion, be significantly overestimated. While this453

will be rare, it will substantially degrade performance. This overestimation will increase the chance454

of that parameter set being accepted. Subsequently, acceptance probabilities will significantly favor455

keeping that state on further MCMC chain iterations. A simple way to “unstick” chains that become456

stagnant for this methodological reason is to simply resample that likelihood value frequently. This457

will of course increase computational cost, but it will ensure that no chain becomes stuck due to458

mis-estimation of the likelihood. This will have the additional benefit of reducing contamination459

of the posterior by oversampling less likely parameters. From here on, this augmented MCMC will460

be referred to as a “resampled MCMC”.461

This adjustment was added so that the likelihood of every chain is resampled every three chain462

iterations, Figure 3c (grey dots). That is for each of the Nc chains, the likelihood of the current state463

of that chain is resampled every third MCMC iteration, independent of the history of the chain.464

Why was this frequency chosen? It is well established that the theoretical acceptance rate for this465

form of MCMC is ∼ 25% for five or more parameters. The resampling rate was chosen to be faster466

than the theoretical frequency of chain movement. Results show this augmentation substantially467

improves acceptance rates, increasing them to ∼ 17− 18%. Furthermore, the resulting acceptance468

rate is only weakly dependent on Ns and h, suggesting the effects of variance on performance have469

been removed. The exception to this is that for large h = 0.07, there is a substantial drop in470

performance. It is unclear what is causing this, but this value is well above any reasonably choice471

for h.472

3.2.3. A note on performance473

A brief note is in order regarding practical performance of this algorithm. To assess performance,474

both the standard MCMC with the analytic LBA likelihood and the npABC algorithm with the475

resampled MCMC were timed for a single posterior fit. To obtain consistent timings, all but one476

active computational core on a Mac Pro computer were turned off. Results show it takes ∼ 137477
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seconds for the npABC algorithm to complete while it takes ∼ 315 seconds for the standard MCMC478

to complete. Thus the npABC with resampled MCMC and FFT based density estimation is more479

than twice as fast as the standard MCMC using the analytic likelihood.480

Profiling of the codes shows the primary reason for this is that computation of the cumulative481

density function (CDF) of the normal distribution, which is required to evaluate the LBA likelihood,482

is cumbersome. While we have a tendency consider functions such as the normal CDF to be483

“analytic”, the term analytic has little meaning in computational settings. In fact, a complex484

numerical procedure is required to approximate the normal CDF, which in this application is485

slower than Monte Carlo sampling of the full likelihood. To be clear, this is not meant to advocate486

for abandoning the standard methods, since accuracy should always be favored over efficiency when487

reasonable. Rather, this is intended to demonstrate that for many types of models, with proper488

coding techniques, computational cost can be very reasonable.489

3.3. Example 4: Fitting the piecewise Linear Ballistic Accumulator (pLBA)490

In this final example, a piecewise LBA type model will be considered. The canonical LBA491

describes decision process that might be described as stationary in the sense that the information492

available to the decision maker remains the same over time. In many cases however, information493

may change during the course of the decision process. In (Huk and Shadlen, 2005; Kiani et al.,494

2008; Thura et al., 2012; Tsetsos et al., 2012; Winkel et al., 2014) for example, a random dot motion495

paradigm where the direction motion of dots change at discrete times during the course of individual496

trials was utilized. In these cases, the information itself is non-stationary and one would expect497

the decision process to change in response to the new information. To account for this, a piecewise498

variant of the standard LBA was first presented in (Holmes et al., 2014). This non-stationary499

model, which has no tractable closed form likelihood function, will be used to demonstrate this500

method in a context where existing methods are insufficient.501

Briefly, to account for the changes in information, this model makes two assumptions on top502

of those of the standard LBA. First, that changes in information influence the rate of evidence503

accumulation so that the rates prior to the change are vi ∼ N(µvi, σ) while those after the change are504

wi ∼ N(µwi, σ). This model is referred to as “piecewise LBA” since evidence accumulation is linear505

and deterministic on each of two segments corresponding to the two separate pieces of information.506

Second, there is some delay (tdelay) between onset of new information and its incorporation into the507

decision process, which is assumed fixed across trials. In the context of a two choice decision, after508

setting σ = 1, the model is fully described by the eight parameters A, b, µv1, µv2, µw1, µw2, ter, and509

tdelay. See Holmes et al. (2014) for further details. To begin, a data set consisting of Nd = 1, 000510

observations is created, assuming A = 1.6, b = 2.7, µv1 = 3.4, µv2 = 2.5, µw1 = 1.5, µw2 = 3.6, ter =511

0.1, tdelay = 0.3.512

While this model is simple to describe, it does not have an analytic description. Nonetheless,513

the methods described here can be applied to this model without too much augmentation. In fact,514

the density estimation procedure itself is identical to that used in the previous examples. The only515

changes that are required for this application are entirely in the resampled MCMC procedure itself.516

In this example, KDE parameters h = 0.02, Ns = 10, 000 will be used with no other changes to the517

likelihood approximation. A slightly more complex MCMC procedure must however be used. The518

DE-MCMC procedure will again be used, this time with 24 chains. However, since the size of the519
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parameter space has increased (8 parameters), a blocked variant must be used to improve sampling520

performance. Here, as in Holmes et al. (2014), the parameters will be grouped into two blocks:521

(A, b, µv1, µv2, ter) which describe the accumulation process prior to the change of information, and522

(µw1, µw2, tdelay) which describe the process after the change.523

3.3.1. Example 4: Results524

Estimated posteriors for this piecewise LBA model are shown in Figure 4a for all model pa-525

rameters. At first glance, it may appear the method has performed poorly since the posteriors are526

quite broad. This is not however the case. First, the mean parameter set from these posteriors527

provides a good fit to the data, Figure 4c. Second, it is well known that the LBA model exhibits528

significant parameter correlations, which commonly lead to poorly localized posteriors. In biological529

and physics literature, this is commonly referred to as a “sloppy model” (Gutenkunst et al., 2007;530

Apgar et al., 2010) since the likelihood is nearly unchanged over a wide range of parameters, Figure531

5. To confirm parameter correlations are the source of this posterior spread, principal component532

analysis (PCA) was performed on the saved MCMC chain data. This reveals that the first and sec-533

ond principal components account for ∼ 92% and 5% of the variability in the posterior respectively.534

Furthermore, the eigenvector of the principal component shows this correlated direction involves535

only the pre-switch model parameter A, b, µv1, µv2.536

To determine how the log likelihood varies along this principal component, the mean parameter537

set ~µ and eigenvector for the principal component ~v1 were extracted and the log likelihood was538

computed at values ~p along the affine linear subspace539

~p = µ+ k ~v1, (3.5)

see Figure 5 for a schematic depiction. For even a relatively large displacement (k = 4, Figure540

4d), the log likelihood and quality of fit change only marginally. Furthermore, it is simple to check541

that the exact parameter set used to construct the data lies nearly on this subspace, and that it542

provides only a marginally better fit, Figure 4e. This supports the supposition that there is a single,543

strong correlation within the model and that the poor localization of the posterior is intrinsic to544

the standard LBA model.545

Since the model degeneracy (i.e. correlation) involves only a one dimensional subspace of the546

8 dimensional parameter space, fixing a single parameter in that subspace should in theory fully547

localize the posterior. To test this, the threshold parameter was fixed to the value b = 2.7, which was548

originally chosen to produce the data. The same procedure was carried out to sample the posterior549

(Figure 4c), and results indeed show it becomes substantially more localized. Furthermore, the550

mean parameter set from the constrained model is almost identical to the exact parameters used to551

construct the data. This confirms the spread in the posterior is a result of the strong correlation.552

3.3.2. npABC and sloppy models553

These observations do however raise an important issue. Recall from the previous two examples554

that this approximation procedure yields small errors in the log likelihood of on the order of555

∼ 1 − 2%. While this might not seem too large, it can have a substantial effect on estimation556

of sloppy models such as this. The issue is that along this correlated parameter dimension, the557

16



variation of the log likelihood is the same size or slightly larger than the log likelihood estimation558

variance. The npABC will thus explore the corridor along this correlated dimension more so than559

an MCMC with an analytic likelihood would. This variance can of course be reduced with extra560

computational power, but in practice this will not be practical.561

If the goal is to understand the behavior of the model and its capacity to account for observa-562

tions, this may not be an issue. However, if the context being considered requires one to extract563

a single parameter set, more must be done. Strategies for dealing with sloppiness in models have564

been discussed extensively in other literature (Gutenkunst et al., 2007; Apgar et al., 2010), but565

such exposition is beyond the scope of this article. It is important to reiterate though that the566

sloppiness of posterior estimates here is more a reflection of an underlying model property that567

prevents accurate estimation.568

4. A procedural overview of npABC for the practitioner569

The previous sections outline many points that must be considered when using this method.570

Here, a procedural overview building on these results is provided for the interested practitioner.571

Familiarity with MCMC methods is assumed and only the details that relate to non-parametric572

component of this method is provided. It is impossible to list all details, however I again note that573

MATLAB codes have been supplied to aid the interested practitioner fill in the technical details.574

0) Choose the number of samples to be used in the estimation process (Ns) and the kernel575

bandwidth (h). A minimum of Ns = 10, 000 should generally be used. Choosing h will576

require trial and error, but Silverman’s rule of thumb (Silverman, 1986) provides a good577

starting point. As a general rule however, err on the side of smaller h since this will reduce578

estimation bias (at the expense of performance).579

1) Loop over chains.580

a) Generate a proposal θn. In the applications here this was done using DE-MCMC581

(Ter Braak, 2006; Turner et al., 2013), but any MCMC procedure can be used.582

b) Compute L̂L(X|θn) using the KDE.583

i) Generate Ns samples from the model.584

ii) Create a discrete representation of the likelihood by binning those samples into 2n
585

(n > 8) equally spaced bins with centers z0, ..., zl. Set these bin centers so that586

z0 < min(X) − 3h and zl > max(X) + 3h. This pads both sides of the histogram587

with zeros so the FFT is more accurate.588

iii) Apply a FFT to map the data into the spectral domain.589

iv) Apply the Gaussian smoothing filter. This is essentially the convolution step in the590

spectral domain.591

v) Map the filtered signal back to the data space, producing a likelihood function592

L̂(zi|θn) on the regularly spaced grid.593

vi) Interpolate this likelihood on the grid to the observation values, L̂(zi|θn)→ L̂(xi|θn),594

using linear interpolation. Do not use cubic splines or anything higher order than595

linear as they can induce negative values in the tail of the distribution.596
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vii) Replace any zero values of L̂(xi|θn) with a minimum value, say Lmin = 1/(10 ∗Ns).597

viii) Compute the approximate log likelihood as598

L̂L(X|θn) =
Nd∑
i=1

log
(
L̂(xi|θn)

)
. (4.1)

c) Compute the acceptance probability α̂n and accept or reject the proposal.599

2) Resample the log likelihood of any previous chain. The algorithms here resample each chain600

every third MCMC iteration, though more efficient schemes are certainly possible. For ex-601

ample, the length of time a chain remains stuck can be recorded and used to determine when602

to resample.603

Steps 1,2 define a single update of every chain in the re-sampled MCMC procedure. Simply iterate604

these steps the desired number of times and apply burn-in rules. Note that steps such as compu-605

tation of the prior, its incorporation into the acceptance probability, and specifically how to call606

the FFT have been neglected for brevity. Details can be found in the codes associated with these607

examples.608

5. Discussion609

This article presents a non-parametric approximate Bayesian computation (npABC) algorithm.610

This method, which combines non-parametric statistical methods with Bayesian inference tech-611

niques, is an extensible methodology for performing Bayesian posterior estimation. The purpose612

of this article is to elaborate this methodology in detail, discuss its pitfalls, improve its efficiency,613

and make it accessible a broader audience of end users.614

A great many algorithms, ranging from Markov Chain Monte Carlo (MCMC) (Gelman et al.,615

2003; Robert and Casella, 2004) to particle filtering methods (Cappé et al., 2004; Del Moral et al.,616

2006), have been developed for the purpose of posterior estimation in contexts where Bayes’ formula617

cannot be computed directly. These methods however typically require a closed form description618

of the model’s likelihood. More recently, numerous approximate Bayesian computation (ABC)619

methods have extended these to likelihood free contexts. These methods however require the user to620

prescribe a set of summery statistics that describe the model / data. Unfortunately, these summary621

statistics are rarely sufficient to describe the model, and so the model that is fit is different from622

the one intended, by a substantial margin in some cases. More recently, non-parametric methods623

have been incorporated into ABC to circumvent this requirement (Turner and Sederberg, 2014).624

Both npABC and ABC are similar in that they seek to determine the likelihood or plausibility625

of a given parameter set by first simulating a large number of model realizations, and second626

comparing those model realizations to the data. The central feature that differentiates npABC from627

other ABC methods however is that for each parameter set under consideration, a non-parametric628

approximation of the underlying likelihood is constructed, as opposed to some surrogate based on629

summary statistics. This provides two distinct benefits. First, the user does not have to make a630

possibly erroneous assumption about the form of the underlying model distribution. Second, this631
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method more fully utilizes the data since it does not compress it into a small number of summary632

statistics.633

The key step in this method of course is to construct an approximation of the underlying models634

density function L(x|θ). This is accomplished using a kernel density estimation (KDE) technique635

(Silverman, 1986), which is a method of directly computing an approximate of the likelihood of any636

particular observation L(xi|θ) from a collection of simulated model observations. The KDE can637

thus be used to directly compute an approximation (L̂L) to the models log likelihood LL(X|θ),638

which is the key piece of information needed for MCMC sampling. Thus a third practical benefit of639

this method, in addition to theoretical benefits mentioned above, is that this KDE can be directly640

integrated into standard MCMC techniques, since the likelihood itself is being assessed rather than641

some surrogate.642

Results here and elsewhere (Holmes et al., 2014; Turner and Sederberg, 2014) show this method-643

ology is highly efficient and performs well. There are however a number of implementation details644

that must be considered. First, the standard KDE procedure is highly inefficient and can itself645

become a computational bottleneck. For this reason, a highly efficient implementation of KDE,646

which utilizes only standard and highly optimized fast Fourier transform and linear interpolation647

subroutines, is presented. In the applications discussed here, this implementation improved com-648

putation times by a factor of 10 or more. Second, while this method can be directly plugged into649

standard MCMC procedures, doing so can lead to inefficiencies. This stems from the fact that650

the KDE is a statistical estimator of the underlying likelihood and as a result has an intrinsic651

variance. To overcome this issue, a “resampled MCMC” procedure is proposed, which accounts for652

the variability in this estimator and substantially improves performance.653

While these investigations demonstrate the efficacy and efficiency of this methodology, like any654

approximate method, it does come with drawbacks that must be kept in mind. First, the KDE655

likelihood estimator is inherently biased. In applications discussed here, this bias is quite small,656

being on the order of 1% or less. Unfortunately, these very small errors can have a profound effect on657

model comparison and hypothesis testing. The essential problem is that standard quantities such as658

AIC, BIC, or DIC are inherently flawed as they are absolute measures of model comparison rather659

than relative measures. It is commonly accepted that ∆DIC of 10 is interpreted as “significant”660

evidence for or against a model. However, if DIC measures are on the order of 1, 000 (which661

is common), a difference between two models of 1% would be considered “significant”, which is662

rarely sensible. Since KDE approximation errors are on the order of 1 − 2%, those errors will663

often overwhelm these model comparison statistics since the distinguishing difference is within the664

methods margin of error.665

A second issue is that this method can have difficulties with models containing very strong pa-666

rameter correlations, which in other fields are commonly referred to as “sloppy models” (Gutenkunst667

et al., 2007). The essential issue here is that the models with strong correlations are under-668

determined in the sense that large parameter variations along the correlated dimension can lead669

to very small changes in log likelihoods. In the final example presented here, varying parameters670

by a factor of 10 along the correlated dimension leads to a ∼ 1% variation in log likelihood and671

nearly indistinguishable fits to the models data. Given these model fit variations are within the672

small margin of error of the KDE approximation, posteriors become broadened. Thus, care must673

be taken in interpreting the results of this method when such under-determined, highly correlated674
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models are being considered.675

Despite these issues, this method has distinct benefits over existing ABC methods. With stan-676

dard methods, it is rarely possible to know how good or bad the summary statistics being used677

are. Using npABC however, the quality of an approximation can be controlled in a predictable678

way by varying kernel density estimation parameters. Furthermore, since the types of errors being679

made with npABC are somewhat predictable and quantifiable, their influence on results is also680

reasonably predictable. Additionally, the efficiency of this methodology is comparable to existing681

methods, especially with the more efficient KDE implementation presented here. Thus it can be682

applied in almost any context where ABC methods are currently being or might be used. For these683

reasons, this method should be added to the toolbox of any researcher performing Bayesian anal-684

ysis of complex models beyond the reach of existing toolboxes such as JAGS (Plummer, 2003) or685

WinBUGS (Lunn et al., 2000). The hope is that this article (along with the supporting MATLAB686

codes) will make this method more accessible to those who could benefit from its use.687
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Csilléry, K., Blum, M. G., Gaggiotti, O. E., François, O., 2010. Approximate bayesian computation710

(abc) in practice. Trends in ecology & evolution 25 (7), 410–418.711

Dantzig, G. B., Thapa, M. N., 1997. Linear Programming 1: 1: Introduction. Vol. 1. Springer.712

Del Moral, P., Doucet, A., Jasra, A., 2006. Sequential monte carlo samplers. Journal of the Royal713

Statistical Society: Series B (Statistical Methodology) 68 (3), 411–436.714

Epanechnikov, V., 1969. Non-parametric estimation of a multivariate probability density. Theory715

of Probability and Its Applications 14 (1), 153–158.716

Friedrichs, K. O., 1944. The identity of weak and strong extensions of differential operators. Trans-717

actions of the American Mathematical Society 55 (1), 132–151.718

Gallistel, C., 2009. The importance of proving the null. Psychological review 116 (2), 439.719

Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B., 2003. Bayesian Data Analysis, 2nd Edition.720

Chapman and Hall/CRC.721

Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., Sethna, J. P., 10722

2007. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol723

3 (10), e189.724

Heathcote, A., Brown, S., 2004. Reply to speckman and rouder: A theoretical basis for qml.725

Psychonomic Bulletin & Review 11 (3), 577–578.726

Heathcote, A., Brown, S., Mewhort, D., 2002. Quantile maximum likelihood estimation of response727

time distributions. Psychonomic Bulletin & Review 9 (2), 394–401.728

Holmes, W. R., Trueblood, J. S., Heathcoat, A., 2014. Asymmetric updating and hysteresis in729

perceptual decision-making with changing information. In review.730

Huk, A. C., Shadlen, M. N., 2005. Neural activity in macaque parietal cortex reflects temporal inte-731

gration of visual motion signals during perceptual decision making. The Journal of neuroscience732

25 (45), 10420–10436.733

Kiani, R., Hanks, T. D., Shadlen, M. N., 2008. Bounded integration in parietal cortex underlies734

decisions even when viewing duration is dictated by the environment. The Journal of Neuroscience735

28 (12), 3017–3029.736

Lee, M. D., 2008. Three case studies in the bayesian analysis of cognitive models. Psychonomic737

Bulletin & Review 15 (1), 1–15.738

Lee, M. D., Wagenmakers, E.-J., 2013. Bayesian cognitive modeling: A practical course. Cambridge739

University Press.740

21



Lunn, D. J., Thomas, A., Best, N., Spiegelhalter, D., 2000. Winbugs a bayesian modelling frame-741

work: concepts, structure, and extensibility. Statistics and computing 10 (4), 325–337.742

Ollman, R., 1966. Fast guesses in choice reaction time. Psychonomic Science 6 (4), 155–156.743

Plummer, M., 2003. Jags: A program for analysis of Bayesian graphical models using gibbs sam-744

pling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing.745

Ratcliff, R., 1978. A theory of memory retrieval. Psychological Review 85, 59–108.746

Ratcliff, R., Rouder, J. N., 1998. Modeling response times for two-choice decisions. Psychological747

Science 9 (5), 347–356.748

Ratcliff, R., Tuerlinckx, F., 2002. Estimating parameters of the diffusion model: Approaches to749

dealing with contaminant reaction times and parameter variability. Psychonomic bulletin & re-750

view 9 (3), 438–481.751

Robert, C., Casella, G., 2004. Monte Carlo statistical methods. Springer, New York, NY.752

Robert, C. P., Cornuet, J.-M., Marin, J.-M., Pillai, N. S., 2011. Lack of confidence in approximate753

bayesian computation model choice. Proceedings of the National Academy of Sciences 108 (37),754

15112–15117.755

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Taran-756

tola, S., 2008. Global sensitivity analysis: the primer. John Wiley & Sons.757

Silverman, B. W., 1982. Algorithm as 176: Kernel density estimation using the fast fourier trans-758

form. Journal of the Royal Statistical Society. Series C (Applied Statistics) 31 (1), pp. 93–99.759

Silverman, B. W., 1986. Density estimation for statistics and data analysis. Vol. 26. CRC press.760

Storn, R., Price, K., 1997. Differential evolution–a simple and efficient heuristic for global opti-761

mization over continuous spaces. Journal of global optimization 11 (4), 341–359.762

Ter Braak, C. J., 2006. A markov chain monte carlo version of the genetic algorithm differential763

evolution: easy bayesian computing for real parameter spaces. Statistics and Computing 16 (3),764

239–249.765

Thura, D., Beauregard-Racine, J., Fradet, C.-W., Cisek, P., 2012. Decision making by urgency766

gating: theory and experimental support. Journal of Neurophysiology 108 (11), 2912–2930.767

Tsetsos, K., Gao, J., McClelland, J. L., Usher, M., 2012. Using time-varying evidence to test models768

of decision dynamics: Bounded diffusion vs. the leaky competing accumulator model. Frontiers769

in Neuroscience 6.770

Turner, B., Sederberg, P., 2014. A generalized, likelihood-free method for posterior estimation.771

Psychonomic Bulletin and Review 21 (2), 227–250.772

22



Turner, B. M., Sederberg, P. B., Brown, S. D., Steyvers, M., 2013. A method for efficiently sampling773

from distributions with correlated dimensions. Psychological methods 18 (3), 368–384.774

Turner, B. M., Van Zandt, T., 2012. A tutorial on approximate bayesian computation. Journal of775

Mathematical Psychology 56 (2), 69–85.776

Usher, M., McClelland, J. L., 2001. The time course of perceptual choice: the leaky, competing777

accumulator model. Psychological Review 108 (3), 550–592.778

Vandekerckhove, J., Tuerlinckx, F., 2007. Fitting the ratcliff diffusion model to experimental data.779

Psychonomic Bulletin & Review 14 (6), 1011–1026.780

Winkel, J., Keuken, M. C., Van Maanen, L., Wagenmakers, E.-J., Forstmann, B. U., 2014. Early781

evidence affects later decisions: Why evidence accumulation is required to explain response time782

data. Psychon Bull Rev 21, 777–784.783

Yantis, S., Meyer, D. E., Smith, J. K., 1991. Analyses of multinomial mixture distributions: new784

tests for stochastic models of cognition and action. Psychological bulletin 110 (2), 350.785

Yellott Jr, J. I., 1967. Correction for guessing in choice reaction time. Psychonomic Science 8 (8),786

321–322.787

Yellott Jr, J. I., 1971. Correction for fast guessing and the speed-accuracy tradeoff in choice reaction788

time. Journal of Mathematical Psychology 8 (2), 159–199.789

23



Figures790

0 5 10
0

0.2

0.4

0.6

0.8

x

L(
x|θ

)

Normal Distribution
Exact
Binned
KDE

0 5 10
0

0.1

0.2

0.3

0.4

0.5

x

L(
x|θ

)

Bandwidth Influence
h=0.02
h=0.1
h=0.5

a) b)

Figure 1: Reconstructing a Gaussian: Panel a) Reconstruction of a normal distribution using the FFT based
KDE method. Gray lines indicate the noisy density estimate derived from binning Ns = 10, 000 sampled points into
210 bins and normalizing to produce a density. Black line indicates the smoothed version after convolving in the
spectral domain. Circles show the exact likelihood at a few values, indicating agreement between the constructed
and analytic likelihood. The bandwidth h = 0.1 is used here. Panel b) Reconstructed likelihood for three choices of
the bandwidth parameter h. The mean and standard deviation parameters used are µ = 5, σ = 1.
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Figure 2: Fitting a bimodal distribution: Panel a) Posterior distribution obtained using Ns = 10, 000 and two
separate values of h = 0.2, 0.68, the latter is computed from Silverman’s rule of thumb. Posterior for the two means
µ1, µ2 are shown. Panel b) Quality of model fit. For each value of h (and Ns = 10, 000). The mean of the posterior
for each parameter was computed, which was used to reconstruct the likelihood. In both cases, the approximate
likelihood method with the associated h was used to construct the likelihood, but with Ns = 1, 000, 000 to reduce
variance. In both cases the log likelihood along with that computed analytically are reported. Panel c) Dependence
of DIC on Ns and h. DIC was computed by fitting the posterior using the analytic likelihood. Then, 100 fits of
the posterior were obtained for each of different combinations of Ns and h. Within each value of Ns, the h values
increase from left to right h = 0.2, 0.4, Silv, 0.8 where Silv indicates the bandwidth computed from Silverman’s rule
of thumb. Panel d) Acceptance rates as a function of Ns, h. Data from the 100 posterior fits in (c) were used, though
variance was so small it is not shown. The reported values of h increase from left to write, as in (c). Note the reduced
efficiency with decreased Ns. A correction to the MCMC that alleviates this performance reduction is discussed in
Section 3.2.2.
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Figure 3: Fitting the LBA: Panel a) Quality of model fit using the analytic likelihood and approximate likelihood
methods (with resampled MCMC). For the npABC fit, the approximate likelihood function was used to reconstruct
the likelihood using the same value of h, but Ns = 1, 000, 000 to reduce variance. The analytic LBA likelihood
was used for the analytic case. The high and low peaked curves correspond to correct and incorrect choice options
respectively. In both cases, the log likelihood is reported. Panel b) Dependence of DIC on Ns and h. DIC was
computed by fitting the posterior using the analytic likelihood. Then, 100 fits of the posterior were obtained for
each of different combinations of Ns and h. Within each value of Ns, the h values increase from left to right
h = 0.01, Silv, 0.04, 0.07 where Silv indicates the bandwidth computed from Silverman’s rule of thumb. Mean and
variance of the DIC samples is shown for each. The resampled MCMC is again used here. Panel c) Acceptance rates
as a function of Ns, h for the standard (black) and resampled MCMC (gray). The same values of h as in panel b,
again increasing from left to right. Resampling occurred every third chain iteration for the resampled MCMC.
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Figure 4: Fitting the piecewise LBA: Panels a,b) Posteriors for each parameter in the full piecewise LBA model
and the restricted model with b = 2.7 fixed. Panels c,d,e) Fit to data for three parameter sets: c) the mean parameter
set taken from (a), d) a translation from the mean parameter set along the first principal component, and e) the
parameter set used to produce the data. Matched (dark) and mis-matched (gray) refer to response times for correct
/ incorrect prior to the information change. Note that in computing the quoted log likelihoods, h was taken very
small and Ns very large to effectively remove any bias / variance in the estimates.
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Figure 5: Sloppy models: Schematic depiction of a sloppy model showing a strong one dimensional correlation in
the likelihood space. v1 indicates the first principal component while the point c would be akin to the mean parameter
set determined from MCMC chain samples. Point d indicates a point along the same principal component subspace
while point e indicates the “best fit” parameter (e.g. maximum likelihood). These points schematically indicate the
parameters used to produce Figures 4c-e respectively.
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