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Abstract
Patterns of waves, patches, and peaks of actin are observed experimentally in many living
cells. Models of this phenomenon have been based on the interplay between filamentous actin
(F-actin) and its nucleation promoting factors (NPFs) that activate the Arp2/3 complex. Here
we present an alternative biologically-motivated model for F-actin-NPF interaction based on
properties of GTPases acting as NPFs. GTPases (such as Cdc42, Rac) are known to promote
actin nucleation, and to have active membrane-bound and inactive cytosolic forms. The model
is a natural extension of a previous mathematical mini-model of small GTPases that generates
static cell polarization. Like other modellers, we assume that F-actin negative feedback shapes
the observed patterns by suppressing the trailing edge of NPF-generated wave-fronts, hence
localizing the activity spatially. We find that our NPF-actin model generates a rich set of
behaviours, spanning a transition from static polarization to single pulses, reflecting waves,
wave trains, and oscillations localized at the cell edge. The model is developed with simplicity
in mind to investigate the interaction between nucleation promoting factor kinetics and
negative feedback. It explains distinct types of pattern initiation mechanisms, and identifies
parameter regimes corresponding to distinct behaviours. We show that weak actin feedback
yields static patterning, moderate feedback yields dynamical behaviour such as travelling
waves, and strong feedback can lead to wave trains or total suppression of patterning. We use a
recently introduced nonlinear bifurcation analysis to explore the parameter space of this model
and predict its behaviour with simulations validating those results.

1. Introduction

The nucleation and growth of the actin cytoskeleton is highly
regulated in eukaryotic cells. Signalling networks and their
downstream effectors control the nucleation, polymerization,
severing, and depolymerization of filamentous actin (F-actin).
Among such signalling agents are small GTPases, with Cdc42
and Rac universally recognized to be central regulators of
the cytoskeleton that shape F-actin dynamics[1–4]. Complex
interactions between regulatory networks and F-actin give rise
to spontaneous spatio-temporal patterns such as moving spots

and spatially localized waves, observed in Dictyostelium [5, 6],
neutrophils [7], fibroblasts [8], and other cell types. Recent
studies using total internal reflection microscopy (TIRF) and
improved fluorescent labels [9–12] have implicated nucleation
promoting factors (NPFs) such as Hem1 and WASP in
their formation. Whether F-actin waves have a functional
significance is unclear, but it has been speculated that they
are related to the cell’s exploration of its environment [7, 13],
phagocytosis [14] and/or edge protrusion [15]. While the term
NPF usually refers to proteins such as (WASP) and Scar/Wave,
here we apply this terminology in a slightly nonstandard way,
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Figure 1. Schematic diagrams of models discussed in this paper.
Left: the pure nucleation promotion factor (NPF) system is based on
the wave-pinning model of Mori et al [25]. Right: NPF/refractory
actin system with a constant pool of actin monomers (not explicitly
modelled).

to small GTPases that are upstream of these proteins, and that
hence, also promote actin polymerization.

This paper is aimed at elucidating the roles of nucleation
promoting factor activation and F-actin negative feedback
(weak versus strong) in the development of dynamic patterns.
We are motivated by two related biophysical systems. (1) Small
GTPases (such as Cdc42, Rac) are known to promote actin
growth and are good candidates for NPF’s [3]. At the same
time, a variety of experimental observations have provided
evidence for feedback from F-actin to upstream signalling
complexes, whether via the Phosphoinositide 3-kinase (PI3K)
pathway [16–18] which links phosphoinositide crosstalk with
small GTPases [19, 20], or by reciprocal interactions of
cytoskeletal proteins with integrins and the resultant signalling
events (see [21, 22] for a review). Previous theoretical models
[23–25], reviewed in [26], consider polarization as a standing
wave of biochemical activity. In one such GTPase model,
denoted ‘wave-pinning (WP)’ [25, 27], a sufficiently large
stimulus produces a travelling wave that stalls, leaving a
polarized state. We investigate how embedding this GTPase
module in a circuit that includes F-actin feedback leads to
dynamic wave-like patterns. (2) Our second motivation is
to contribute to previous theoretical analyses of actin waves
[7, 28–32], reviewed in [33] by slightly changing the focus
away from detailed, more complex treatment of actin. Most
previous actin-waves models include either length or angular
distributions of actin or even model individual filaments [30].
We remove this complexity and instead systematically probe
the effects of the interactions between NPF’s and F-actin.
The resulting model is analytically tractable and displays rich
dynamic behaviour, including static polarization, single waves
that traverse the domain, persistent reflecting waves, wave
trains, and oscillations localized at the cell edge. Our model
suggests that nucleation promoting factor/filamentous actin
(NPF/F-actin) interactions alone are capable of producing rich
dynamic patterning.

2. Model discussion

In the models discussed below, the actin nucleation promoting
factor has two forms, an active membrane bound form (A), and
an inactive cytosolic form (I), as shown in figure 1. Definitions

and values of parameters are provided in appendix B, and
table D1. We consider a 1D spatial domain where x is position
along a ‘cell diameter’ and t is time. This model could describe
a two-dimensional square cell, whose protein concentrations
are constant in one direction [30]. Balance equations of the
form

∂A

∂t
= f + DA∇2A, (1a)

∂I

∂t
= − f + DI∇2I, (1b)

along with no flux boundary conditions are used to describe
the NPFs. The active form A is taken to be membrane bound
whereas the inactive form, I, is cytosolic. Note that the total
amount, A + I, is conserved by (1). We assume that A is slow
diffusing and I is fast diffusing so that DA � DI . We use a
simplified set of ‘WP’ kinetics [25]:

wave-pinning: f = f (A, I) =
(

k0 + γ An

An
0 + An

)
I − δA,

(2)

motivated by previous work on GTPases [25], to describe
cycling between active and inactive NPFs, figure 1. Briefly,
k0 is a basal activation rate and the Hill function represents
autocatalytic positive feedback of A. The magnitude of that
positive feedback is controlled by γ and the sharpness of
the response is determined by the Hill coefficient n. A0 is
the typical level of A at which positive feedback ‘turns on’
and δ is the NPF inactivation rate. These terms are motivated
biologically from known and hypothesized GTPase properties
discussed in [34–36, 25].

Our model differs from those of others [7, 28, 29, 32]
in several ways. In [7], the NPF is identified with Hem1,
assumed to autoactivate from a fixed inactive pool. Iglesias et al
[32] propose an excitable FitzHugh–Nagumo (FN) type wave
generator with additional components to account for features
such as persistence and polarity. A second model based on FN
was proposed by [37] for the random appearance of transient
patches of membrane-associated proteins typical of stimulated
cellular slime mould (Dictyostelium discoideum) cells. There
the patterns stem from noise in the local activation long-range
inhibition that the authors assume. In [28], the NPFs also
interconvert between active and inactive forms (with conserved
total amount). Their kinetics are based on quadratic interaction
terms (implying at most two steady states), whereas in our
equation (2), the Hill function saturating positive feedback
term means that up to three A steady states exist for fixed I.
This distinction is an essential feature of our model that leads
to a type of wave behaviour not present in [28]. Whitelam et al
[29] take an altogether different approach and propose a model
based on F-actin auto activation and degradation by another
biochemical factor, not an NPF based model.

We embed these nucleation promoting factor kinetics in
a circuit where the active NPF promotes F-actin (F) growth,
which in turn feeds back to inhibit NPF activation, as shown
in figure 1. F-actin plays the role of a refractory variable in the
sense of excitable systems; that is, it locally suppresses NPF
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activity to produce a quiescent spatial gap behind the NPF
wave. F-actin is modelled by

F-actin:
∂F

∂t
= εh, (3a)

where h is a function of other variables (see below) and ε is
a rate constant that represents the longer refractory timescale
(τ = 1/ε) on which the actin kinetics occur relative to the
NPF timescale. The NPF kinetics (1a), (1b) are modified to
include negative feedback from F :

Modified NPF kinetics:

f (A, I, F ) =
(

k0 + γ A3

A3
0 + A3

)
I − δ

(
s1 + s2

F

F0 + F

)
A.

(3b)

A Hill coefficient n � 2 is essential for WP behaviour.
While n = 2 works, the relevant parameter regime for patterns
is quite narrow, a problem that is corrected by using n = 3.
The parameters s1, s2 represent the relative weighting of the
basal versus the F-actin-mediated NPF inactivation rates. δ

sets the overall timescale of NPF degradation. The pure NPF
‘WP’ scenario corresponds to s1 = 1, s2 = 0. Note that we do
not include actin filament angular or length distributions.

It is assumed that the filamentous actin, F , is nucleated
from a constant (non-depleting) pool of monomeric G-actin
(G), whose level affects only the rate constant kn. We thus
take the function h to be

F-actin kinetics: h(A, F ) = knA − ksF. (4)

The combination εkn is the rate of F-actin nucleation by NPF
and εks is the F-actin disassembly rate. We assume that DA �
DI and that F is non-diffusive. Note that our calculations (not
shown) indicate that taking F to be diffusive with DF ≈ DA

does not appreciably affect the results. Substantially larger
diffusion rates for F will however prevent waves from forming.
Equations governing A, I, F are supplemented with no flux
(homogeneous Neumann) boundary conditions and simulated
numerically using the algorithm discussed in appendix D.

As we wish to focus on the role of feedback, we
concentrate on the parameters s1, s2, k0. The first two describe
properties of feedback from actin to the NPFs, which is
of primary interest here. The third (k0), represents a basal
NPF activation rate and is known to be a key parameter for
determining the sensitivity of the NPF model to perturbations.
We map the parameter space with respect to these parameters
and outline the stability of spatially uniform steady state
solutions to both small and large perturbations. In order to
provide context, we compare properties of the model to two
well-studied pattern forming systems: the FN model [38] and
the WP model [25]. Aside from this discussion, further details
are provided in the appendix.

Motivation for our models stems from the FN system
(appendix A) where a bistable wave-generating component
produces a moving front and a second refractory component
suppresses the trailing edge to create a localized travelling
wave or pulse (figure 2). The formation of that wave stems
from the (cubic) reaction kinetics. Large amplitude limit cycles
arise in the spatially-independent model leading to oscillation

Figure 2. The FitzHugh–Nagumo model provides motivation for
our representation of F-actin and NPF system. A wave-generator
induces a travelling wave-front, which separates states of high and
low NPF activity. The F-actin has the role of a refractory variable
that suppresses the high trailing edge of the wave on a longer
timescale, leading to a spatially localized wave.

between high and low activity; diffusion simply causes these
regions to propagate in space, as a localized travelling wave.
(The limit cycle stems from a sub-critical Hopf bifurcation,
i.e. oscillations appear suddenly with finite amplitude as a
parameter is varied [39].) Our model builds on this general
structure but with reaction kinetics that produce different
stability properties and long term dynamics.

In place of the bistable wave generator used in the
FN model, our model uses the ‘WP’ model consisting of
equations (1), (2) for the NPFs. As a stand alone model
(i.e., no F feedback), it exhibits distinct regimes: (1) A
classical ‘Turing regime’ where a uniform steady state is
unstable to small spatially heterogeneous perturbations. (2) A
‘WP regime’ where the uniform steady state is stable to all
small perturbations, but unstable to perturbations beyond some
threshold amplitude. Such perturbations initiate a travelling
wave of A that propagates into the domain, thereby depleting
I, and causing the wave front to slow down and eventually
stall in the domain interior (under appropriate conditions).
This module serves as the wave initiator in our model.

3. Results

We now describe the behaviours predicted by our model,
focusing on how patterns are generated and their long term
dynamics. We discuss the effects of two model elements on
pattern forming regimes: (1) conservation of the NPFs and
(2) feedback between NPFs and F-actin. We show that the
negative feedback produces oscillatory behaviour that sets up
several types of localized travelling waves. These can arise
either from an instability or from a distinct property, which we
refer to as excitability, related to the WP regime in the NPF
model. On long timescales, we find distinct wave propagation
regimes that contrast with dynamics of the FN system and
correspond to different cellular behaviours. We first describe
these behaviours, determined using numerical simulations,
then apply a nonlinear perturbation analysis to understand the
structure of the parameter space that gives rise to them.

3.1. Spatiotemporal dynamics

We simulated our model for a range of parameter values. Here
we describe the long time behaviour of patterns that result in
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(a) (b)

(c) (d)

(e) (f )

Figure 3. Simulations of our nucleation promoting factor/
filamentous-actin (NFP/F-actin) model (equations (1), (3b), (3a),
(4)) with a local perturbation at x = 0 used to initiate patterning.
Parameter sets as in figure 5 and table D1. For example, panel (a) is
simulated with the parameter set labelled ‘a’ in figure 5. Panels
(a)–(d) are computed at fixed k0 with s2 varied. As s2 is increased,
the behaviour undergoes a transition from stable boundary localized
patterns (a), to oscillating boundary localized patterns (b), to
reflecting waves (c), to a single terminating wave (d), to no
patterning. Panels (e) show a wave train and panels ( f ) a more
exotic pattern.

various parameter regimes. Representative results for A(x, t)
and F(x, t) are shown in figure 3 as intensity plots in the (x, t)
plane (‘kymographs’). In each of these cases, patterning is
induced with a localized perturbation of A at the x = 0 margin
of the domain. While the dynamics for F and A are similar,
the NPF pattern leads and the F-actin pattern lags behind in
all cases. In figure 4 we show a typical set of profiles for the
NPFs and F-actin corresponding to the behaviour shown in
panel (d) of figure 3. The NPF is relatively localized, and leads
at the front. The F-actin profile follows, with a broader trailing
edge. Note that the width of the trailing edge is modulated by
ε. We are primarily interested in exploring the influence of
activation, inactivation, and feedback on dynamic behaviour.
For this reason, we specifically focus on varying the parameters
k0, s1, and s2. Figure 5 depicts a representative (k0, s2) slice
of the parameter space, subdivided into regimes based on long
term evolution of patterns. Holding other parameters constant
(table D1), we ran full PDE simulations for (k0, s2) grid
values displayed in figure 5 and used an automated algorithm
to classify the qualitative behaviour (appendix D). Labelled
points correspond to the panels in figure 3, demonstrating

0 0.5 1
0

0.5

1

1.5

Position (x)

C
on

ce
nt

ra
tio

n

F−Actin / NPF Wave Profile

Active NPF
F−Actin

Figure 4. Snapshot of the localized travelling wave profile of
F-actin, F , and NPF, A, from figure 3(d) at time T = 95. The wave
of NPF leads, and is followed by a wave of F-actin. The F-actin
suppresses the trailing edge of the NPF wave, producing a localized
profile.

Figure 5. The k0, s2 parameter plane, showing regimes of distinct
patterning for our nucleation promoting factor/filamentous-actin
(NFP/F-actin) model (equations (1), (3b), (3a), (4)), as determined
by full simulations of the full partial differential equation (PDE)
model. Here, s1 = 0.5, ε = 0.1, and all other parameters as in
table D1. Initial conditions: homogeneous steady state (HSS) with a
region of elevated A level (local perturbation) superimposed at the
boundary x = 0. Letters (a)–(f) correspond to patterns shown in the
corresponding panels of figure 3. Symbols denote no patterning (o),
boundary localized pattern (♦), persistent reflecting wave (+),
single terminating wave (×), and persistent wave trains (∗). The
grey curve is a two parameter continuation of the Hopf bifurcations
in the local perturbation bifurcation plot of figure 6(b). The closed
loop represents an approximate boundary of a region where an
oscillatory instability exists for the full spatial RD system.

simulation results in different regimes. The grey ‘fish-shaped’
bifurcation curve will be discussed in section 3.2.

Figure 5 and the associated kymographs in figure 3 show
five primary patterning regimes (a)–(e) and several other exotic
patterns that appear near borders between regimes, for example
( f ). Consider first the parameter sets in figure 3 (a)–(d). These
are computed with a fixed value of k0 and increasing values of
s2 to show the role of increasing F-actin feedback s2. For low
values of s2, the local perturbation of activity at x = 0 leads to
a pattern that localizes at the boundary and remains there. This
is similar to the s2 = 0 WP case. As s2 is increased, we observe
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a transition regime, in which the region of activity begins to
oscillate near the boundary (b). It separates when the feedback
strength is larger (c), and then a localized travelling wave
traverses the domain. Upon reaching the opposite boundary,
the active region resides there for a period of time before
separating and crossing the domain again. We refer to this as
‘reflecting wave’ behaviour. At yet higher values of s2 (d), once
the wave arrives at the opposite boundary, it is suppressed.
At even higher feedback strengths, regions of high activity
never form. This progression shows that an appropriate level
of feedback is essential: too little, and waves never propagate,
too much and activity is simply suppressed.

Figure 3(e) shows a fifth type of behaviour. Here, a wave
of activity traverses the domain and in its wake, the refractory
F level falls low enough that a new wave of activity can form.
This leads to a ‘wave train’. Figure 5 shows that this behaviour
exists at higher values of the basal NPF activation rate k0

than for the reflecting waves. In this regime, if the domain
size is increased, multiple waves coexist in time with a fixed
separation distance determined by system parameters. Aside
from the above five primary regimes, additional exotic patterns
such as those shown in figure 3( f ) are found in small regions at
the boundaries of the primary regions. The full range of such
exotic behaviour is beyond our scope here, and as these occur
in limited parameter regions, our classification algorithm has
not been designed to identify these details.

Figure 5 confirms that a balance between k0 (NPF
activation) and s2 (F-actin mediated NPF inactivation) is
required for patterning. The upper left corner (high F feedback
and low NPF activation) and the bottom right corner (low
F feedback and high NPF activation) both correspond to no
patterning, with a region of dynamic patterning in between.
Another feature of interest is the transient patterning band
(indicated by the symbol ×) separating the upper left corner
devoid of patterning and the band of persistent patterning.
This shows that the transition between these regimes is not
abrupt. In contrast, the transition to polarization type patterns
at the bottom right corner is abrupt. The band of × represents
transient single pulse of activity that traverses the domain.
This type of pulse behaviour only occurs at large values of the
feedback s2. (At low values of s2, polarized solutions are seen
in place of pulse solutions so no such band of × is present at
the lower boundary.) We constructed similar parameter planes
for several values of s1. These have similar structure, shifted
due to increased basal inactivation for larger s1.

3.2. Bifurcation analysis of a local approximation

We now use a bifurcation technique recently introduced by
[40, 41] to map the parameter space of this model and
detect the minimal stimuli needed to trigger patterning from
a uniform state. For simplicity, the patterns in figure 3 are
initiated with a (sufficiently large) perturbation of active
NPF, A, at the boundary x = 0. However in some regimes,
such a perturbation is not necessary and instability causes
patterns to grow spontaneously from noise, even at very low
level. Traditionally, linear stability analysis (LSA) is used
to examine stability properties of a homogeneous (spatially

uniform) steady state solution (HSS). Such analysis can
reveal Turing-type instabilities, but cannot indicate whether
larger amplitude perturbations grow or decay outside of these
unstable regions. Furthermore, it becomes more challenging
for models consisting of several variables, such as the one we
propose.

Here we perform a nonlinear stability analysis of our
model, exploiting the fast and slow diffusion scales to
characterize the evolution of localized perturbations. This
method, denoted ‘local perturbation analysis’ (LPA), and
invented by Mareé and Grieneisen [40], uses a set of ordinary
differential equations (ODEs) to approximate the partial
differential equations (PDEs) by taking the limits Dfast → ∞
and Dslow → 0 where inactive NPF, I and active NPF and
F-actin A, F are assumed to be fast and slow diffusing,
respectively. The resulting system of ODEs (appendix C)
describes the initial growth or decay of a localized perturbation
(of arbitrarily small width) applied to the homogeneous steady
state. An analysis of this system then provides an approximate
bifurcation structure for the PDE system. This method is
capable of detecting the presence of limit cycle oscillations
(stemming from Hopf bifurcations in a well-mixed system)
as well as spatial properties such as Turing instabilities,
threshold responses such as wave-pinning [25], and other
dynamics. While it is a powerful method for determining where
patterning can occur and due to what mechanism, it does not
predict long term dynamics. We thus connect this analysis
to the full PDE simulations described above. Details of the
approximating ODEs for the LPA are provided in appendix C
with a more extensive description in [41, 42].

In figure 6, we show the LPA bifurcation plots for (a) the
nucleation promoting factor (WP) model alone (equations (1)–
(2)), and compare it to a similar plot in (b) for our NPF/F-actin
model to contrast the differences and understand the effect of
F-actin feedback. The bifurcation parameter is k0, and the
vertical axis is the amplitude of a localized perturbation of
NPF activity (A�).

We first explain the interpretation of panel (a). The
thick branch emanating from (0,0) and crossing the diagram
represents the stability of the homogeneous steady state to
simple noise (solid line for stable and dashed for unstable
homogeneous steady state (HSS)). The thin looped branch
represents stability of the HSS to the localized perturbation
as follows. In region I, the HSS is stable with respect to
small perturbations (both uniform and spatially nonuniform).
The thin dashed line in this region indicates a threshold.
A localized NPF perturbation whose magnitude is lower
than this threshold level will decay back to the HSS. Once this
threshold is breached, the perturbation will grow, jumping to
the upper thin branch, a stable attractor. This indicates the
initiation of a pattern. In region I, that pattern is the previously
discussed ‘WP’ behaviour. This is the threshold-dependent
(i.e., ‘excitable’) pattern-formation regime. As indicated by the
bifurcation diagram, as k0 increases in this region, the threshold
that separates the homogeneous steady state from the patterned
state diminishes. Once k0 crosses the boundary of region II, a
bifurcation occurs, indicated by the branch point where the thin
and thick curves intersect. In that region, the HSS is unstable
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Figure 6. Nonlinear bifurcation analysis for (a) the wave-pinning model (equations (1), (2)), and (b) our NPF/F-actin model, (equations (1),
(3b), (3a), (4)). Thick lines: HSS of the well-mixed system; thin lines: additional local states in the local perturbation system. Solid lines:
stable states; dashed lines: unstable states. In (a), three patterning regions are observed: I, III—wave-pinning excitable response requiring a
positive (respectively, negative) valued perturbation, II—unstable response. In region IV, the well mixed state is stable to all perturbations.
Parameters used are γ = K = δ = 1 with the conserved quantity A + I = 2.27, taken from [25]. In (b), the structure is similar to (a) but with
two new Hopf bifurcations (H) resulting from F-actin feedback. Between these, there is an oscillatory instability leading to wave dynamics.
Parameters: s1 = 0.7, s2 = 0.7, ε = 0.1, and others as in table D1. Grey arrows indicate the stability of branches.

with respect to arbitrarily small spatial perturbations, as in
classical Turing instability. In region III, the HSS is again
stable to noise, but excitable by a sufficiently large negative
valued local perturbation. In region IV, the HSS is stable
to all perturbations, regardless of amplitude or sign. Thus,
the results of LPA reveal two significant ‘excitable’ pattern
forming regimes, I and III, and an unstable regime, II.

Comparing panels (a) and (b) of figure 6, we find the
following common features. The shapes of the diagrams are
similar, sharing branch point bifurcations separating regions
that we recognize as excitable and unstable. We also find key
differences. First, we see in panel (b) the appearance of a
pair of Hopf bifurcations (labelled H). These new bifurcations
indicate the presence of a regime of oscillatory behaviour (for
a range of k0 between the two H bifurcation values) that is not
present in figure 6 (a) for the WP model on its own. This new
feature stems directly from the F-actin negative feedback in our
model for actin waves. We used a two-parameter continuation
to follow the Hopf bifurcation points with respect to both k0

and s2. The result is shown as the grey curve superimposed on
figure 5. Here, we are primarily concerned with the resulting
loop that acts as an approximate boundary of a region where
an oscillatory instability exists for the PDE system. While the
loop is predicted by the approximate nonlinear bifurcation
technique, it has good correspondence with a partition of
parameter space into regions of instability (inside the loop)
and excitability (outside).

To connect this stability discussion to the long-term
behaviours described above, consider first the boundary-
localized patterns of figure 3 (a), (b). These patterns appear
only in the excitable region; the limit cycle oscillations that
appear inside the loop are inconsistent with static spatial
patterns. Similarly, the single wave solution of figure 3(d)
occurs only in the excitable regime. This is not surprising
since both patterns have a stable character that is inconsistent
with an oscillatory instability. The wave train solution in
figure 3(e), on the other hand, only occurs inside the unstable
loop. The reflecting wave solution in figure 3(c) occurs in both

regimes. Exotic patterns such as figure 3( f ) appear near the
edge of this loop. The consistency of the LPA results with the
PDE simulation results confirms the relevance of the LPA to
understanding long-term dynamic behaviour. As discussed in
appendix C, the local perturbation approximation is, strictly
speaking, valid only until the perturbation is no longer
localized. In a separate article [42], asymptotic analysis is used
to rigorously probe the comparison between this technique
and more traditional asymptotics methods. However, as we
have informally shown here, this nonlinear bifurcation method
generally corresponds well to simulations of the full spatially
explicit PDE model.

3.3. Insights from model studies

In summary of our nucleation promoting factor/F-actin model,
intermediate levels of refractory feedback are required to
induce dynamic patterning. Too little feedback leads to stable
patterns akin to those seen in pure NPF (WP) model. As
feedback is progressively increased, static patterns start to
oscillate, then become travelling waves; further feedback
kills the waves as they arrive at boundaries, and finally leads to
loss of all patterning by strong damping of all perturbations. It
was also found that in different regimes, the waves that result
take the form of either wave trains or reflecting waves.

We point out a few substantive differences between the
mathematical structure of our model and that of the FN model.
The FN waves are driven by oscillations of the reaction kinetics
and diffusion simply converts those oscillations to travelling
waves. Thus, unstable regimes lead to persistent wave trains
and excitable regimes lead to single travelling waves that leave
the stable homogeneous steady state in their wake. The reaction
kinetics in our NPF/F-actin model exhibit no such inherent
oscillatory kinetics, and the resulting waves are, instead, driven
by a combination of the wave-pinning structure in the NPF
module, which is intimately tied to diffusion, and refractory
feedback. This feature leads to distinct behaviours that are not
observed in FN based models nor in other models based on a
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Turing-type wave generator. (1) The model exhibits a transition
between states of static polarization and states characterized
by dynamic travelling wave patterns as the feedback strength is
modulated. Such transitions could be induced experimentally
if one could identify the binding domain that causes F-actin
to pull NPFs off the membrane. Mutation of this domain
would reduce the negative feedback and thus cause a transition
from oscillating waves to static polarization. (2) Regimes exist
where a transient stimulus will excite a stable homogeneous
state, inducing persistent travelling wave dynamics. Such a
stimulus could be achieved by transient photoactivation of
Rho GTPases [43]. (3) Within the regime of persistent patterns
shown in figure 5 there is a wealth of dynamics that includes
reflecting waves, wave trains, and boundary localization.

4. Conclusions

As shown in this paper, a small extension of a minimal
model for Rho-GTPase (wave-pinning) dynamics [25] to
include feedback from F-actin leads to a variety of
novel spatiotemporal dynamics. The general structure of
our nucleation promoting factor (NPF)/F-actin model was
motivated by two systems, the FitzHugh–Nagumo (FN) model
for impulse propagation in neurons and the ‘wave-pinning’
model for small GTPases in eukaryotic cells, chosen here to
represent a NPF. It was shown that the NPF triggers initial
pattern formation and refractory F-actin produces spatially
localized travelling waves. The resulting model exhibits a
rich collection of dynamics including static polarization and
boundary localized patterns, single waves, reflecting waves,
wave trains and more exotic patterns. The identification of
NPFs with small GTPases is one hypothesis that distinguishes
our model from other current models. This idea is based on
extensive evidence for actin assembly downstream of Cdc42,
Rac, and Rho [2, 3, 44], and on experimental observations that
actin feedback affects PI3K-mediated pathways [16, 18, 19],
and integrin signalling [21, 22] that are, in turn, known to affect
small GTPases. However, many of our results would hold
equally well for interpretations of A, I as forms of other actin-
promoting factors with membrane bound and free cytosolic
forms that interconvert rapidly.

To gain a better understanding of the parameter space
and modes of pattern formation, we analysed these systems
with a relatively new nonlinear stability analysis that considers
stability of homogeneous steady states with respect to localized
perturbations. This analysis revealed the presence of two
stability regimes, ‘excitable’ and unstable with the transition
between them occuring at a PDE-variant of a Hopf bifurcation.
In the first, only perturbations whose magnitude exceeds a
threshold can trigger a pattern, whereas in the second, patterns
arise from arbitrarily small noise. Combining these results with
simulations, we connected the long term behaviour of patterns
to these stability regimes. We found that wave trains are
instability driven, reflecting waves occur in both regimes, and
both transient wave and boundary localized patterns are present
in excitable regimes. We subsequently suggested observed
actin patterning phenomena to which these behaviours relate.

These systems are distinct from other current ‘actin
waves’ models [7, 28, 29, 32] both in structure and in richness

of behaviours. The models in [7, 28] are designed around
NPF models with unstable homogeneous steady states and do
not exhibit excitable behaviour. The model in Whitelam et al
[29] is structurally distinct, hypothesizing that a biochemical
inhibitor is responsible for patterning as opposed to an NPF.
Being a direct extension of the FN model, it also likely does not
account for persistent patterning outside of unstable regimes,
a key requirement for stable systems that show persistent
responses to transient stimuli. Yet another model for actin
waves by [45] is based on an entirely different mechanism
of membrane curvature. See also alternative models proposed
by [46, 47]. Our model thus suggests a mechanism for actin
patterning that is substantially different from previous work
on the topic and exhibits a broader range of behaviours.

While our model is simplified for maximal insight (and
therefore not a detailed description of cellular events), it is
tempting to draw connections between the dynamics predicted
by our model and phenomena that are observed experimentally.
The static boundary-localized pattern observed in figure 3(a) is
indicative of a static polarization associated with chemotaxis,
where the NPF and F-actin co-localize at the front of a
lamellipodium.

The oscillating boundary pattern in figure 3(b) is
reminiscent of experiments in which the leading edge of the
lamellipodium oscillates [48]. The NPF in the simulations
remains at one end of the cell, but its accumulation
oscillates. This leads to oscillating actin polymerization, which
would exert an oscillatory force on the membrane, causing
cyclic protrusion. Several types of oscillating membrane
morphologies were observed in [48]. Their ‘I’ state displayed
oscillations perpendicular to the membrane, with a fairly
constant profile parallel to the membrane. We believe that
our oscillations may be related to these. The ‘I’ state was
induced by constitutive activation of the Rho GTPase Rac1,
supporting the assumption that Rho GTPases are relevant
to the dynamic behaviours found here. The travelling wave
patterns in figures 3 (c)–(e) are similar to actin wave patterns
observed in [5, 6], with clearest data in [7, 8, 10]. Gerisch
et al [10] showed several examples of waves reflecting from
the boundary, as in figure 3(c). Weiner et al [7] and Millius
et al [8] showed single pulses or trains of pulses extinguishing
at the boundary, as in figures 3(d) and (e), or persisting at the
boundary as in 3(a).

Developing a broad based conceptual framework for
interpreting experimental observations and transitions between
different dynamical behaviours has been a key goal of this
work. Our model is a minimal representation of actin-NPF
dynamics. In one sense, it is simpler than other current
models, as we made no attempt to represent actin filament
length or orientation that others consider [28, 29, 30, 31].
The absence of these details here indicates that, at least from
the perspective of pattern dynamics and richness, the model
structure is as important as biophysical details of F-actin. From
a biophysical perspective, it is important to determine whether
or not the feedbacks proposed here occur and are relevant
to the formation of dynamic actin structures, and if so, what
factors mediate that feedback. From a theoretical perspective,
it is important to gain a more complete understanding of the
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propagation of these patterns and their connection to stability
regimes.
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Appendix A. The FitzHugh–Nagumo model

The FitzHugh–Nagumo (FN) model [38], depicted in figure 2
is given by the equations

∂v

∂t
= f (v) − w + γ + ∇2v,

∂w

∂t
= a(bv − cw)

(A.1a)

where f is the cubic

f (v) = dv(v − 1)(α − v). (A.1b)

Originally meant as a caricature of impulse propagation in
axons, v is identified with a fast-changing membrane voltage
and w represents a more slowly varying property of ion
channels. For sufficiently large γ , a wave of v propagates,
increasing w in its wake. On a slightly longer timescale,
increased w causes v to decrease leading to an impulse.

In this system, wave formation is driven almost
exclusively by the reaction kinetics independent of any
diffusive effects. A sub-critical Hopf bifurcation arises as γ

is varied, leading to large amplitude limit cycle oscillations
where v oscillates between two stable branches of the bistable
kinetics for v. Further, the FN system demonstrates two
behaviours. (1) Instability of the homogeneous steady state
(HSS) gives rise to persistent oscillations in the reaction
kinetics and persistent wave behaviour in the PDEs. (2) The
HSS is stable and a large perturbation can give rise to a single
wave which decays back to that state.

We point out these properties to contrast them with those
of our model. The wave generating NPF reaction kinetics
for our model do not exhibit limit cycle oscillations. Our
wave generating NPF variable A, which is akin to v, is
monostable. Instead, a distinct ‘wave-pinning’ property that
we describe next gives rise to waves. This distinction leads to
the behaviours discussed in the main text.

Appendix B. Wave pinning

The NPF module was motivated by the ‘wave-pinning’ (WP)
model for polarization of small GTPases [34–36, 25, 49],
proposed as a mechanism for breaking symmetry and
generating polarized patterns in cells. The WP model
(figure 1(a)) is described by equations (1), (2). Under the
assumption DA � DI , this model exhibits two basic pattern
forming regimes shown in figure 6(a): a classical Turing
regime (region II) and a WP regime (regions I, III). In
the Turing regime, a single steady state of the well mixed
kinetics is linearly stable in a well mixed sense but unstable
to heterogeneous noise. In the wave-pinning regime, a single

steady state exists and is both linearly and turing stable. Thus,
the well mixed kinetics alone do not suggest any pattern
forming behaviour as is the case in the FN model. In this
regime however, sufficiently large perturbations (indicated by
the separation between thick and thin lines in figure 6(a))
can initiate a travelling wave of high activity. As this wave
propagates into the domain, it depletes the background inactive
form I causing the wave to slow down, and in appropriate
parameter regions, stall in the interior. Where bistability serves
to initiate waves in the FN model, this mechanism serves as the
primary wave generating component in our model. See [25, 27]
for further exposition of wave-pinning.

Appendix C. Nonlinear bifurcation analysis

The bifurcation analysis discussed in this paper is based
on a nonlinear analysis that determines the stability of a
homogeneous steady state (HSS) with respect to localized
perturbations. The method, called the ‘local perturbation
analysis’ (LPA) was first introduced in [40] and more
extensively developed in [41, 42]. We briefly describe it here.
Consider a system of reaction diffusion (RD) equations with
slow diffusing (u) and fast diffusing (v) variables

∂u

∂t
(x, t) = f (u, v) + Du∇2u, (C.1)

∂v

∂t
(x, t) = g(u, v) + Dv∇2v. (C.2)

Here Dv � Du and x ∈ Rd . (We identify u with active NPF,
A, and actin F ; v represents the fast diffusing inactive NPF, I.)
For simplicity, in this exposition we consider one slow and one
fast diffusing variable. However, the method can be extended
to consider families of slow (respectively fast) variables so that
u, v are vectors.

Consider the limit Dv → ∞. In this limit, the fast variable
has only a global, homogeneous behaviour due to the very large
diffusive length scale. Further, take the limit Du → 0 so that
the slow variable has a purely local behaviour. Now apply a
local perturbation to the slow variable u (figure C1). Then to a
good approximation, u has a purely local behaviour (ul) near
the perturbation, and a uniform global level (ug) elsewhere,
which do not interact through diffusion when Du → 0. Here
ul represents the amplitude of the narrow perturbing pulse,
and ug the background level of u that has been perturbed. In
contrast, v is purely global (vg) since in the limit Dv → ∞,
spatial inhomogeneities are smoothed out immediately. Hence,
vg ≈ v is the background level of v. The system of RD
equations (C.1) can now be approximated by a set of ODEs

dug

dt
(x, t) = f (ug, vg),

dvg

dt
(x, t) = g(ug, vg),

dul

dt
(x, t) = f (ul, vg).

(C.3)

This approximation holds for some time until the perturbation
is no longer localized.

Ordinary differential equations have an advantage that
automated bifurcation techniques can be applied, using one
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Figure C1. Schematic diagram of the local perturbation of u on
which the ‘local perturbation analysis’ (LPA) approximation is
based. In the limit Du � Dv , u takes on a local behaviour near the
perturbation and another, global, behaviour elsewhere. Here ul , the
amplitude of the narrow perturbing pulse is the ‘local variable’, ug,
the background level of u is the ‘global’ u variable. The fast
diffusing variable v (not depicted) takes on a uniform global level,
v ≈ vg as any inhomogeneities are quickly smoothed out. The
dashed line depicts the idealized local perturbation in the LPA
diffusion limit, and the solid line is its realistic counterpart, where
small but finite diffusion of u causes a slight outwards spread.

of several available software packages. (Partial differential
equations are still largely managed on a case-by-case basis.)
As described in the main text, the bifurcation analysis of
this reduced approximation provides information about the
initial growth or decay of a localized perturbation in the RD
system. A primary benefit of this method is that the applied
local perturbation is of arbitrary height whereas other stability
methods only consider small perturbations and cannot detect
threshold behaviour. When the diffusion disparity in (C.1)
is moderately large, the approximation leads to predictions
about parameter dependence and types of pattern-forming
instabilities that closely match the simulated behaviour of
the full RD system. The local pulse analysis is valid for a
timescale that is shorter than the slow diffusion timescale (over
which perturbations spread). For example, taking a pulse-
spreading length scale on the order of 10% of the domain,
the slow diffusion timescale would be (0.1L)2/DA ≈ 30 (see
table D1), a rough outer limit for the validity of LPA. The
approximation does not provide direct information about long
term dynamics of the pattern; for this reason, full simulations
of the PDEs are still needed. We emphasize that all results were
checked with full simulation and that LPA was used only as a
guide. However, having this tool to map out relevant parameter
regimes, and to see how changes in the structure of the model
affect its overall behaviour proves enormously useful.

We demonstrate this analysis for the WP system in
appendix B. We identify A and I as the slow and fast diffusing
quantities in equations 1. The reduced system of ODEs
describing the stability of this system to local perturbations
are

dAg

dt
=

(
k0 + γ An

g

kn + An
g

)
Ig − δAg, (C.4)

dIg

dt
= −

(
k0 + γ An

g

kn + An
g

)
Ig + δAg, (C.5)

dAl

dt
=

(
k0 + γ An

l

kn + An
l

)
Ig − δAl . (C.6)

As before, here Al is the amplitude of the thin localized
perturbing pulse of A, whereas Ag the background global
level of A that has been perturbed. Similarly, I ≈ Ig is the
background global level of the inactive NPF. Conservation of
these forms under the assumption that Al is confined to a local
spatial region implies that Ag + Ig = T where T is the total
conserved amount of material. The system then reduces to

dAg

dt
=

(
k0 + γ An

g

kn + An
g

)
(T − Ag) − δAg, (C.7)

dAl

dt
=

(
k0 + γ An

l

kn + An
l

)
(T − Ag) − δAl . (C.8)

A bifurcation analysis of this system using k0 as the bifurcation
parameter produces figure 6(a). The thick branch of states
represents the HSS where no inhomogeneity is present
(Al = Ag). The thin branches represent patterned states where
Ag 
= Al .

Appendix D. Simulation methods

All numerical simulations of the full system of RD equations
were carried out with an implicit-diffusion explicit-reaction
numerical scheme coded in MatLab (MathWorks). In all cases
homogeneous Neumann boundary conditions were applied
and 100 grid points were used. In figures 3, 5, a pulse of A was
applied to 5% of the spatial domain closest to the boundary x =
0 to induce patterning, but a similar pulse in any other location
would suffice. Similarly, perturbations in the form of a gradient
also induce pattern but with different response thresholds.
Bifurcation diagrams were produced using MatCont [50], a
numerical continuation package designed in MatLab.

An automated algorithm was developed in MatLab to
analyse the spatio-temporal pattern resulting from the full RD
simulations. Spatial profiles were computed and stored at time
intervals 	T = 5 for each simulation. At each of these times,
the maximum (‘max’) and minimum (‘min’) values of A over
space were determined, as well as their spatial locations. From
this, the velocity of the maximum point was computed. This
information was used to classify the solution type using the
following three criteria.

(1) If | max(A) − min(A)| < η = 0.05 for all T > 500,
the pattern is classified as transient. Otherwise it is called
persistent.

(2) If the location of the maximum is biased toward one
domain boundary for all T > 500, the pattern is
classified as boundary localized. Otherwise it is classified
as dynamic.

(3) If the maximum point moves in the same direction (i.e. its
velocity has a fixed sign) for more than 2/3 of the time,
the wave is classified as unidirectional. Otherwise it is
classified as reflecting.
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Table D1. Parameters used for our model. Typical units would be
μM (concentration), μm (distance) and s (time). NPF parameters
are modified from [25] and actin parameters are chosen to illustrate
a range of interesting dynamical behaviours.

Parameter name Value Units

k0 0–1 Time−1

γ 1 Time−1

A0 0.4 (concentration)
δ 1 Time−1

s1 0–2 Unitless
s2 0–2 Unitless
F0 0.5 (concentration)
kn 1 Unitless
ks 0.25 Unitless
TNPF 1 (concentration)×length
ε 0.1 Time−1

L 1 Length
DA, DI 10−3/3, 10−1/3 Length2 Time−1

These criteria can be used to classify the following pattern
formation regimes demonstrated in figure 3: no pattern (not
shown), boundary localized pattern as in panels (a), (b),
persistent reflecting wave (c), single terminating wave (d),
wave train (e). More exotic patterns such as figure 3( f ) that
were not the focus of this investigation can be misclassified by
this algorithm.
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