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Abstract Reaction diffusion systems are often used to study pattern formation in bi-
ological systems. However, most methods for understanding their behavior are chal-
lenging and can rarely be applied to complex systems common in biological appli-
cations. I present a relatively simple and efficient, nonlinear stability technique that
greatly aids such analysis when rates of diffusion are substantially different. This
technique reduces a system of reaction diffusion equations to a system of ordinary
differential equations tracking the evolution of a large amplitude, spatially localized
perturbation of a homogeneous steady state. Stability properties of this system, deter-
mined using standard bifurcation techniques and software, describe both linear and
nonlinear patterning regimes of the reaction diffusion system. I describe the class of
systems this method can be applied to and demonstrate its application. Analysis of
Schnakenberg and substrate inhibition models is performed to demonstrate the meth-
ods capabilities in simplified settings and show that even these simple models have
nonlinear patterning regimes not previously detected. The real power of this tech-
nique, however, is its simplicity and applicability to larger complex systems where
other nonlinear methods become intractable. This is demonstrated through analysis
of a chemotaxis regulatory network comprised of interacting proteins and phospho-
lipids. In each case, predictions of this method are verified against results of nu-
merical simulation, linear stability, asymptotic, and/or full PDE bifurcation analy-
ses.
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1 Introduction

Reaction diffusion equations (RDEs) have provided a ubiquitous framework for
studying pattern formation in chemical and biological systems (Turing 1952; Gierer
and Meinhardt 1972; Lewis and Kareiva 1993; Murray 2002; Jilkine et al. 2007;
Goehring et al. 2011). As a result of their sustained interest, numerous linear (Turing
1952), weakly nonlinear (Pismen and Rubinstein 1999; Short et al. 2010; Rubin-
stein et al. 2012; Kaper et al. 2009; van der Stelt et al. 2013), and fully non-linear
(Iron and Ward 2000; Kolokolnikov et al. 2005a, 2005b, 2005c; Ward and Wei 2002;
Ueda and Nishiura 2012; Mori et al. 2011; Doelman et al. 1998, 2007; Doelman and
Veerman 2012; Veerman and Doelman 2013) techniques for analyzing RDEs have
been developed. Here, I present an efficient, relatively simple addition to this tool-
box, aimed at analyzing systems where diffusivities are substantially different.

A difference in rates of diffusion has been implicated as being of vital importance
for patterning in numerous biological systems. In the context of cell biology, some
rates of diffusion are not just different but are vastly different, varying by factors of
100–1000. Numerous cell functions are controlled by regulators, such as “GTPase’s”
in cell motility (Jilkine et al. 2007; Holmes et al. 2012a, 2012b; Dawes and Edelstein-
Keshet 2007; Marée et al. 2006; Mori et al. 2008), “ROP’s” in plant development (Fu
and Yang 2001), and “Min” proteins in bacterial division (Huang et al. 2003; Huang
and Wingreen 2005). All of these regulatory proteins have fast and slow diffusing
components since they exist in membrane bound and unbound states. Analysis of
these types of systems motivated the development of this method.

Here, I consider a generic system of RDEs with a large diffusion disparity and
highlight a useful method for understanding their linear and nonlinear stability prop-
erties. Consider the following generic system:

∂u

∂t
(x, t) = f (u, v;p) + Duuxx, (1a)

∂v

∂t
(x, t) = g(u, v;p) + Dvvxx, (1b)

where u and v are vectors, Du,Dv are diagonal matrices of diffusion coefficients, and
p is a vector of reaction parameters. We will assume for (u, v) ∼ O(1), f and g are
O(1) so that the timescale of reaction kinetics is O(1). We will further assume that
the diagonal entries of Du (resp. Dv) are small (resp. large) and refer to u and v as
“slow” and “fast” variables respectively. The essential point moving forward is that
this produces a three timescale problem with slow, intermediate, and fast timescales
related to u diffusion, reactions, and v diffusion. We will exploit this feature to sim-
plify the analysis of this system.

The “Local Perturbation Analysis” (LPA) is a nonlinear stability technique appli-
cable to systems of this type. This method, originally devised by Grieneisen (2009),
is a bridge between linear and nonlinear analysis methods having benefits of each.
Linear stability analysis (Turing 1952) is straightforward and widely used, but is lim-
ited to providing linear information. Nonlinear methods, while more informative, are
much more challenging, often specific to the system being investigated, usually re-
quire an ansatz or a priori knowledge of the solution being investigated, and rarely
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scale up to complex systems with many variables. Recent advances (Veerman and
Doelman 2013; Doelman and Veerman 2012) have led to more general techniques
that are less sensitive to the specifics of the system, but they are still limited to low
dimensional systems (e.g., (2a)–(2c)). The LPA provides nonlinear stability informa-
tion beyond that of linear stability analysis, but is relatively simple to implement.
An important consequence of this simplicity is that it can be readily applied to com-
plex systems involving many variables where other methods become intractable (see
Sect. 5).

In contrast to linear stability analysis which probes stability of a homogeneous
steady state (HSS) with respect a small amplitude, spatially extended perturbation, the
LPA probes stability with respect to a spatially localized, large amplitude perturbation
of the slow variable u. As will be shown, when diffusion of u (resp. v) is sufficiently
slow (resp. fast) the perturbed region and broader domain evolve according to an
approximate collection of ODE’s on the timescale of reactions

dug

dt
(x, t) = f

(
ug, vg;p)

, (2a)

dvg

dt
(x, t) = g

(
ug, vg;p)

, (2b)

dul

dt
(x, t) = f

(
ul, vg;p)

. (2c)

The variables (ug, vg) represent “global” concentrations away from the perturbation
and ul the concentration at the local perturbation. Tracking the growth or decay of
this perturbation provides stability information for (1a), (1b). There are three primary
benefits to this technique that make it an ideal complement to existing techniques:

(1) The large amplitude “probe” detects pattern formation in linearly stable parame-
ter regimes,

(2) In these nonlinear patterning regimes, the analysis results provide qualitative in-
formation about the dependence of “response thresholds” on system parameters,

(3) It is scalable to large, complex systems involving potentially large numbers of in-
teracting components. Further its application is not highly specific to the particu-
lar system being investigated and its implementation takes advantage of existing
software.

Applications of this method to biologically motivated reaction diffusion systems
are found in Mata et al. (2013), Holmes et al. (2012a, 2012b), Grieneisen (2009).
Rather than focus on a specific phenomena or biological system, my goal here is to
explain and validate the method itself. I will describe the types of RDEs to which this
method is applicable, its limitations, and the type of information that it can (and can-
not) provide. Well-known examples of pattern forming systems are used to demon-
strate its application and make direct comparisons between its predictions and results
of classical methods (e.g., linear stability analysis, full PDE bifurcation, or numeri-
cal simulation). In the context of a more complex chemotaxis related example, I also
show this method: Easily scales to larger systems with many variables, allows the
user to gain a more complete overview of the parameter space structure than with
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other methods, and greatly aids investigation of both parametric and structural per-
turbations of a complex reaction network.

2 Local Perturbation System Formulation

I now proceed to show that the evolution of a spatially localized perturbation of a
homogeneous steady state of Eqs. (1a), (1b) evolves according to Eqs. (2a)–(2c).
Consider Eqs. (1a), (1b) on the interval [−1,1] with no flux boundary conditions, and
u,v in R

M and R
N , respectively. It is not necessary to assume all slow (respectively

fast) variables have the same diffusivities, only that they can be divided into fast and
slow diffusing classes. For notation simplicity, however, assume

Du = ε2
I, Dv = D I, (3)

where I is the properly sized identity matrix. The central assumption will be that the
three timescales defined by reaction kinetics, slow, and fast diffusion respectively are
substantially different, i.e. ε2 � 1 � D. Nondimensionalization by domain size and
the reaction timescale (so that f,g ∼ O(1)) have been implicitly assumed. Further
assume this system has a HSS (us, vs) satisfying f (us, vs;p) = 0 = g(us, vs;p).

Consider a highly localized perturbation of this steady state of the form

u(x,0) = us, v(x,0) = vs, |x| > √
ε,

u(x,0) = up, v(x,0) = vp, |x| < √
ε,

(4)

where (up, vp) is O(1) with respect to ε and D; see Fig. 1. Denote Rl to be the local
region |x| < √

ε and Rg the global region |x| > √
ε.

2.1 Time and Space Scale Separation

To track the evolution of (u, v) on these regions, different time and space scales
must be considered. A multiple timescale argument is applied to parse the role of
reaction and diffusion effects on different timescales, and a transition/boundary layer
technique is used to separate relevant space scales.

The reaction, slow, and fast diffusion timescales inherent in this class of RDE’s
can be described by t = O(1), tu = ε2t , and tv = Dt , with the intermediate reaction
timescale of most interest here. Suppose u = U(x, t, tu, tv), v = V (x, t, tu, tv). With
the perturbation (4) taken as an initial condition, transition layers on an O(ε) length
scale are expected; see dashed lines in Fig. 1. Employing a stretched coordinate ξ =
(x − xlayer)/ε near transition layers, we come to two systems:

∂U

∂t
= f + ε2Uxx,

∂V

∂t
= g + DVxx (5)

describing outer regions away from transition layers and

∂U

∂t
= f + Uξξ ,

∂V

∂t
= g + D

ε2
Vξξ , (6)
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Fig. 1 To probe nonlinear stability, the local perturbation analysis probes the response of a homogeneous
steady state of Eqs. (1a), (1b) to a localized perturbation Eq. (4). To leading order, values in the perturbed
region (Rl ) and the broader domain (Rg ), denoted ul, ug , respectively, will evolve independently. The fast
variable v, not depicted here, will be spatially uniform on the entire domain taking value vg . Transition
layer effects are present on O(ε) regions, but to leading order do not influence evolution of the perturba-
tion. A collection of ordinary differential equations for (ug, vg,ul) describe the growth or decay of this
perturbation and provide stability information for (1a), (1b)

describing dynamics in transition layers. I now describe the evolution of (U,V ) on
the outer regions Rg,l on the short and intermediate timescales.

2.2 Evolution on the Fast Diffusion Timescale

Consider first the fast diffusion timescale and assume U,V are described by first-
order perturbative expansions U = U0 + εU1, V = V 0 + εV 1. Substituting tv = Dt

into Eq. (5) and collecting leading order terms

∂U0

∂tv
= 0,

∂V 0

∂tv
= V 0

xx, (7)

it is clear that in outer regions, U0 = U0(x, t, tu) does not evolve due to either reac-
tion or diffusion and V 0 simply spreads due to diffusion

V 0(x, t, tu, tv) = v0(t, tu) +
∞∑

n=1

vn(t, tu) exp
(−(nπ)2tv

)
cos(nπx). (8)

So in each outer region Rl,g , V 0 evolves to a constant value exponentially quickly
with tv .

Thus, (U0,V 0) will evolve to a piecewise constant profile with possibly differ-
ent values in Rg and Rl ; see Fig. 1. Denote the values on the global domain Rg

by (ug, vg) and those on the local region Rl as (ul, vl). Now consider the transition
layers between these regions on this fast timescale. Given the spatial symmetry, con-
sider only the left transition layer and substitute tv = Dt into Eq. (6). O(ε−2) terms
indicate that V 0

ξξ = 0. Thus, to leading order

V 0 = a0(tv)ξ + a1(tv).
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Matching conditions dictate that

lim
ξ→∞V 0(ξ) = vl, lim

ξ→−∞V 0(ξ) = vg.

So, a0 = 0, resulting in a shadow system (Nishiura 1982; Li and Ni 2009) where V 0 is
constant over the entire domain. Its value will be denoted vg(t, tu). On this timescale
to leading order, U0

tv
= 0 so that transition layer effects do not influence U0.

2.3 Evolution on the Intermediate Reaction Timescale

Evolution of this perturbation on the reaction timescale will determine the stability of
the HSS. As tv progresses approaching this timescale, to leading order the solution
in the outer regions is described by (ug, vg,ul), representing the piecewise constant
values on Rl,g , respectively. The evolution of these values on this timescale are
described by Eq. (5) with t = O(1). To leading order

∂U0

∂t
= f

(
U0,V 0;p)

,
∂V 0

∂t
= g

(
U0,V 0;p)

. (9)

Substituting (ug, vg) and (ul, vg) respectively into the first of these, we obtain
Eqs. (2a), (2c). Integrating the evolution equation for V 0 in Eq. (9) over the domain,
we see that

∂vg

∂t
= 1

2

∫ 1

−1
g
(
U0, vg;p)

dx = g
(
ug, vg;p) + √

ε
[
g
(
ul, vg;p) − g

(
ug, vg;p)]

.

(10)
So, to leading order the values (ul, ug, vg) evolve according to (2a)–(2c) on the in-
termediate timescale. Equations (2a)–(2c) will be referred to as the LPA system of
ODE’s (or LPA–ODE’s) associated with Eqs. (1a), (1b). Diffusion and transition
layer effects become important on the slow timescale, so evolution of any pertur-
bation beyond the intermediated timescale requires consideration of features specific
to the system being investigated.

A few remarks about the LPA–ODE’s (Eqs. (2a)–(2c)) are in order at this point.
First, they represent a singular limit of the original RDE’s in Eqs. (1a), (1b). The
consequence of this is that the evolution of u on the broader domain (represented by
ug) is independent of ul since diffusive coupling is gone (ε → 0) and the effect of
ul on the fast variable is negligible. This is evident in the structure of Eqs. (2a)–(2c)
where Eqs. (2a), (2b) decouple completely from (2c). In fact, (2a), (2b) represent the
canonical “well mixed” system associated with Eqs. (1a), (1b). Implications of this
decoupling are briefly mentioned in Sect. 3 and discussed in detail in Sects. 3.1 and 4.

3 The Local Perturbation Analysis: Application and Examples

The goal of the LPA is to determine in which parameter regimes localized perturba-
tions of this form grow or decay. Growth suggests a patterning response and decay
back to the HSS suggests stability. Since the evolution of this perturbation is de-
scribed by Eqs. (2a)–(2c), the location and stability of its steady states/fixed points
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provides predictions about the stability properties of the HSS of Eqs. (1a), (1b). This
information can be found using standard bifurcation analysis techniques for systems
of ODEs.

In coming sections, I will demonstrate this method through example and the fol-
lowing capabilities will be emphasized.

(1) The LPA detects linear instabilities of Eqs. (1a), (1b). In future discussions, we
distinguish two types of linear instabilities, well mixed instability (to a spatially
homogeneous perturbation) and Turing instability (to heterogeneous perturba-
tions). The detection of well mixed instabilities is a direct consequence of the
Eqs. (2a), (2b) precisely representing the well mixed system. Detection of Turing
instabilities will be the subject of Theorem 4.1 in Sect. 4.

(2) The LPA detects inherently nonlinear patterning where a HSS is linearly stable,
but a sufficiently large perturbation yields a patterning response.

(3) While the LPA approximation is not valid on the slow timescale of pattern evo-
lution, its results can be used to make reasonable conjectures about the type of
pattern (i.e., highly localized spike or a sharp interface separating distinct planer
regions) that might evolve.

(4) In nonlinear patterning regimes, the LPA qualitatively maps the dependence of
patterning response thresholds on system parameters p (excluding diffusion pa-
rameters).

The LPA is applied to two classical systems, Schnakenberg (1979) and Substrate
Inhibition (Kernevez et al. 1979), both well studied in Murray (1982), Ward and Wei
(2002), Iron et al. (2004), for example. Predictions of this analysis are then directly
compared to results of linear stability, numerical, full PDE bifurcation, and asymp-
totic analyses.

3.1 The Local Perturbation Analysis of a Schnakenberg Model

The Schnakenberg system is a Turing model where u is an activator and v a substrate.

ut (x, t) = a − u + u2v + ε2�u = f (u, v) + ε2�u, (11a)

vt (x, t) = b − u2v + D�v = g(u, v) + D�v. (11b)

u decays linearly, both are produced uniformly in the domain, and the nonlinearity
represents an autocatalytic reaction where u consumes v. A linear stability analysis
of Eqs. (11a), (11b) can be found in Murray (1982). In Ward and Wei (2002), Iron
et al. (2004), asymptotic and spectral analysis showed that for a = 0, highly localized
spike solutions exist and are stable.

It is possible to analytically perform the LPA for Eqs. (11a), (11b). The resulting
system of LPA–ODE’s becomes

u
g
t = a − ug + (

ug
)2

vg, (12a)

v
g
t = b − (

ug
)2

vg, (12b)

ul
t = a − ul + (

ul
)2

vg. (12c)
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Here, p = (a, b) is the vector of system parameters and a will be the bifurcation
parameter of interest. Equations (12a), (12b) decouple from Eq. (12c) and simply
represent the spatially homogeneous, well mixed system (i.e., with ε = 0 = D). The
unique HSS (us, vs) of Eqs. (11a), (11b)

us = a + b, vs = b

(a + b)2
, (13)

is thus a solution of Eqs. (12a), (12b). Similarly (ug, vg,ul) = (us, vs, us) is a steady
state of Eqs. (12a)–(12c). This steady state of the LPA–ODE’s represents the HSS of
Eqs. (11a), (11b) with no perturbation, i.e., both ul,g = us .

While this is the only HSS of the RDE system, the LPA system actually has two
steady states with the second satisfying

ug = us, vg = vs, ul = a + a2

b
=: ul1. (14)

With b fixed and a considered as a bifurcation parameter, the steady state branches
us and ul1 intersect in a transcritical bifurcation at a = b. Furthermore, it can be
readily shown by computing the Jacobian of Eqs. (12a)–(12c) that the stability of
these branches is determined solely by the sign of fu and that

∂f

∂u

(
us, vs

)
> 0,

∂f

∂u

(
ul1, vs

)
< 0, a < b, (15)

∂f

∂u

(
us, vs

)
< 0,

∂f

∂u

(
ul1, vs

)
> 0, a > b. (16)

The location and stability of these steady states is depicted in Fig. 2a. The HSS
branch (ug, vg,ul) = (us, vs, us) is linearly unstable for a < 1 (Region I). For a > 1
(Region II), the HSS is linearly stable, however a perturbation of ul above the ul1

branch will grow to infinity. From here on, the HSS branch (ug, vg,ul) = (us, vs, us)

will be referred to as a “global” steady state branch of the LPA system. (ug, vg,ul) =
(us, vs, ul1) will be referred to as a “local” branch, since it describes a steady state of
the local variable ul .

3.1.1 Local Perturbation Analysis Predictions

These results lead to the following predictions.

Prediction 1: A Turing bifurcation occurs near a = 1. For a < 1, the homogeneous
steady state of Eqs. (11a), (11b) is linearly unstable. For a > 1, it is stable but suffi-
ciently large perturbations yield a patterning response.

Based on the asymptotics above, it is expected that the initial behavior of a local
perturbation of the RDE’s mimics the behavior of the perturbation ul determined by
this bifurcation analysis. In region I (a < 1 in Fig. 2a), arbitrarily small perturba-
tions of ul = us grow, predicting the HSS of Eqs. (11a), (11b) is linearly unstable.
In region II, sufficiently large perturbations of ul are required to elicit a response for
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the LPA–ODE’s, suggesting the HSS is linearly stable but large perturbations yield a
response.

Prediction 2: In region II, as a increases, increasingly large perturbations are re-
quired to initiate patterning.

In region II (a > 1), the gap between the stable global and unstable local branches
represents a response threshold for the LPA–ODE’s: a perturbation of ul below the
threshold decays back to the global HSS branch, a perturbation above it grows. The
dependence of this response threshold on the system parameter a can be found by
visual inspection of the LPA diagram. For a > 1, that threshold increases with a.
This threshold is precise only in the ε → 0,D → ∞ limit, however the qualitative
dependence on a is expected to hold for the RDE system (11a), (11b) with sufficiently
extreme diffusivities.

Prediction 3: The predicted Turing bifurcation near a = 1 is sub-critical for suffi-
ciently extreme diffusivities with large amplitude patterned states present on both
sides of the bifurcation.

In dynamical systems theory, the terms subcritical and super-critical are often
used to describe the character of bifurcations such as Hopf or pitchfork. Super-critical
denotes a bifurcation that gives rise to a small amplitude response upon crossing
it. Subcritical denotes one where the HSS loses stability immediately giving way
to a large amplitude response. In the latter case, responses can occur even outside
of the unstable regime given a sufficient perturbation. The Turing bifurcation near
a = 1 is predicted to be subcritical with the unstable local branch ul1 characterizing
a threshold that shrinks to 0 at the bifurcation, giving rise to instability of the HSS.

Prediction 4: Predicted patterned solutions take the form of a spatially localized
spike for sufficiently distinct diffusivities.

In region II, the LPA–ODE’s exhibit blow up; a perturbation above the critical
threshold grows to infinity. When this perturbation becomes large, diffusion is ex-
pected to become important for the RDEs. This will tend to oppose growth and
smooth the solution. It is reasonable to conjecture that at a particular height, reac-
tion driven growth, and diffusion driven suppression will balance leading to a large
amplitude, spatially localized spike. For future reference, it is expected that when ε

decreases, decreasing the strength of diffusion, this spike would be come taller and
more localized.

3.1.2 Confirmation of Predictions

Figures 2b, 2c, 2d show results of linear stability, full PDE bifurcation, and numerical
analyses for Eqs. (11a), (11b). These results confirm the predictions above with a few
caveats discussed at the end of this section.

Confirmation of Prediction 1 Results of a Turing stability analysis in Fig. 2b con-
firm the presence of a linear instability for a < 1. There, eigenvalues of the linearized
Jacobian (i.e., Turing growth rates) are plotted as a function of the bifurcation param-
eter a for four successively smaller values of ε. For a � 1, there is a positive Turing
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Fig. 2 Comparison of linear stability, local perturbation, and full PDE bifurcation analysis results for
the Schnakenberg system (Eqs. (11a), (11b)). All diagrams are computed with D = 10, b = 1. (a) Local
perturbation analysis results: Global us and local ul1 solution branches of Eqs. (12a)–(12c) along with
their stability are plotted as a function of a. Two pattern forming regimes are predicted; (I) linearly (Turing)
unstable, and (II) linearly stable where a sufficiently large perturbation induces patterning. (b) Linear
stability analysis (LSA) results Maximum eigenvalue of J1 (18) as a function of “a” for various values of
ε. As ε → 0, the edge of the Turing region, marked with dots, approaches a limiting point near a = 1, in
agreement with LPA predictions in panel a. (c) PDE bifurcation results: Bifurcation analysis of the full
system of PDEs (Eqs. (11a), (11b)). The vertical axis describes the height (maximum − minimum) of a
patterned solution. As predicted by the LPA, stable patterned solutions exist both in the linearly unstable
and stable regimes for sufficiently small ε. The location of the Turing bifurcation near a = 1 agrees with
panels a,b. Marked points represent points where the computed solution is plotted in panel d. (d) Example
solutions of Eqs. (11a), (11b) with ε = 0.025

growth rate. Dots on Fig. 2b indicate the onset of linear instability; these bifurcation
values are recorded for two different values of D in Table 1. The location of these
bifurcation values appears to converge to the predicted value of a = 1. This confirms
prediction 1 and supports point 1 in Sect. 3 that the LPA detects linear instabilities.

LPA results also suggest that in the linearly stable region II, sufficiently large
perturbations elicit a patterning response. To test this, both full PDE bifurcation
analysis and asymptotics are employed. Figure 2c shows results of numerical con-
tinuation (using Auto (Doedel et al. 2007)) of patterned solutions of the full RDE
system (Eqs. (11a), (11b)) with the vertical axis depicting the height (maximum–
minimum) of the patterned solution. The horizontal axis depicts the unpatterned HSS
(maximum − minimum = 0). For sufficiently small values of ε, the stable patterned



The Local Perturbation Analysis 167

Table 1 Value of “a” at the edge of the Turing region for the Schnakenberg system (Eqs. (11a), (11b))
with b = 1 for various values of ε. Column two: values drawn from the marked points in Fig. 2b. Column
three: similar values for D = 1000. The final row is the value of the bifurcation predicted by the LPA. This
bifurcation approaches that predicted by the LPA as ε → 0, D → ∞ in agreement with Corollary 4.2

ε Turing (D = 10) Turing (D = 1000)

0.1 0.76 0.82

0.05 0.88 0.95

0.025 0.91 0.98

0.01 0.93 0.99

LPA 1 1

Fig. 3 Verification of the qualitative relationship between “a” and the patterning threshold in the
Schnakenberg system ((11a), (11b)) using numerical simulation. ε = 0.01 and all other parameters are
as in Fig. 2. Simulations were given a period of time to settle into a stable steady state (when present). Per-
turbations of varying size were then applied to the middle 10 % of the domain. The vertical axis represents
the size of the applied perturbation. “x” indicates the perturbation grows resulting in a spike. “◦” indicates
the perturbation decays back to the homogeneous state. The patterning threshold increases with a as in-
dicated by the LPA. To the left a ≈ 1, the homogeneous state is unstable and to the right of a ≈ 1.7, it is
stable to all perturbations, in agreement with Fig. 2c

solution extends into the a > 1 region where the HSS is linearly stable, confirming
the presence of stable patterned solutions in that regime. Further, asymptotic results
in Appendix A show that in the ε → 0,D → ∞ limit, patterned solutions exist for
all values of a. This confirms prediction 2 and lends support for point 2 in Sect. 3.

Confirmation of Prediction 2 In Fig. 3, local perturbations of different height were
applied to the HSS for multiple values of a and the presence/absence of a pattern
was recorded. As a increases, the perturbation size required to induce patterning in-
creases as predicted by the LPA. This confirms prediction 2 and supports point 4 in
Sect. 3 that results of the LPA can be used to determine the qualitative dependence of
response thresholds on parameters in nonlinear patterning regimes.
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Confirmation of Prediction 3 Figure 2c shows that as ε → 0, the nature of the Tur-
ing bifurcation changes from being super-critical to sub-critical. For large ε, small
amplitude patterns emanate from the bifurcation. For smaller ε, the stable HSS gives
way to large amplitude patterns immediately upon crossing the bifurcation. Also, for
small ε, an unstable patterned state is present outside the linearly unstable regime.
As the bifurcation is approached, this unstable state collapses onto the HSS changing
its stability. This is similar to the standard example of a subcritical Hopf bifurcation
where an unstable limit cycle colliding with a stable node results in a bifurcation.

It seems this association of a nonlinear patterning regime with a subcritical Tur-
ing bifurcation is somewhat common. Both the substrate inhibition example and the
chemotaxis example in Sect. 5 presented later show subcritical bifurcations. Simi-
larly, Rodrigues et al. (2011) observed stable heterogeneous patterns adjacent to Tur-
ing parameter regimes for a discrete predator prey model. Additionally, unpublished
results show a similar parameter space structure for Doelman et al. (2007), Gray
Scott Kolokolnikov et al. (2005a, 2005b) and ratio dependent predator prey (Wang
et al. 2007) models.

Confirmation of Prediction 4 Figure 2d and results in Appendix A show that in
both the linearly stable and unstable regimes a spike like solution forms. Further-
more, these results show that as ε is decreased (reducing the opposing effect of diffu-
sion), the spike height increases as expected. Thus, the inferences in prediction 4 are
confirmed in this example, supporting point 3 in Sect. 3.

3.1.3 Notes and Caveats of the Local Perturbation Results

First, it is important to note that there is no direct relationship between the solution
branches in Figs. 2a, 2c. The location and stability of branches in Fig. 2a provide
information about whether and under what conditions patterns “might” form. They do
not provide any quantitative information about the resulting pattern, and in particular
the height of the ul1 branch does not in any way predict the height of the resulting
spike solution (which is presented in Fig. 2c.)

Second, there are discrepancies between the LPA predictions and results of linear
stability and full PDE bifurcation analyses. First, the location of the predicted bifur-
cation at a = 1 is not precise. Both linear stability and PDE bifurcation results show
the value of the actual Turing bifurcation depends on ε and D. Though this does
appear to converge to the predicted a = 1 in the proper limit. This type of approxima-
tion error will be present in any LPA application and will be discussed in more detail
in Sect. 4.

Third, the LPA predicts patterned solutions will form for all a > 1. Full PDE
bifurcation results (Fig. 2c) in contrast show the patterned state is annihilated in a
saddle node (or fold) bifurcation at a finite value of a = a∗(b, ε,D). The location of
this bifurcation does increase as ε → 0 and asymptotic results in Appendix A show
the presence of a patterned solution for all values of a. So in the ε → 0,D → ∞
limit, a∗ → ∞, in agreement with LPA results. For these reasons, one must take care
when interpreting the results of this analysis, recognize their limitations, and confirm
them when possible.
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3.2 The Local Perturbation Analysis of a Substrate Inhibition Model

I now apply the LPA to a substrate inhibition model to demonstrate a different set
of results and interpretations obtained with the same method. This model (Kernevez
et al. 1979)

ut (x, t) = a − u − ρuv

1 + u + Ku2
+ ε2�u = f (u, v) + ε2�u, (17a)

vt (x, t) = α(b − v) − ρuv

1 + u + Ku2
+ D�v = g(u, v) + D�v, (17b)

describes two cosubstrates that are constantly generated, decay linearly, and are used
up in an enzymatic reaction. The nonlinear term is indicative of multiple substrate
molecules u binding to a single enzyme rendering it inert for further interaction with
the remaining co-substrate v, thus the term substrate inhibition. See (Murray 1982)
for linear stability results for this system.

In the previous example, it was possible to analytically compute the various solu-
tions of the LPA system of ODEs. This will not generally be the case, but it is possible
to find and track the various LPA solution branches efficiently using standard ODE
bifurcation techniques. Figure 4 mirrors Fig. 2 with results in panel b, c, d verifying
predictions inferred from LPA results in panel a. In this example, solution branches
of the LPA–ODEs along with there stability are computed with the numerical contin-
uation software package Matcont (Dhooge et al. 2003).

LPA results for this example predict four regimes of behavior: (I) No patterning,
(II, IV) sufficiently large perturbations of the HSS lead to a patterning response, and
(III) linearly (Turing) unstable. These predictions follow from the same arguments as
the previous example. In region III, arbitrarily small perturbations of ul = us grow,
suggesting instability. In region II (resp. IV), sufficiently large positive (resp. neg-
ative) valued perturbations of ul = us grow, suggesting a response. In region I, all
perturbations of ul decay back to us , suggesting the HSS is stable to all perturba-
tions.

Result of a Turing analysis of Eqs. (17a), (17b) in Fig. 4b show that a Turing
instability is present in region III as predicted, and the boundary of this regime ap-
proaches the boundary of region III as ε → 0, consistent with Corollary 4.2. Full PDE
bifurcation analysis of Eqs. (17a), (17b) in Fig. 4c confirm the presence of patterned
solutions in regions II and IV. Linear stability results show these patterns are not a re-
sult of linear instability and numerical simulation (results not shown) confirms large
perturbations of HSS are required to yield patterning. Also consistent with these pre-
dictions, neither numerical continuation or simulations have revealed any patterned
solutions in region I.

There are a few important contrasts between these LPA results and those for the
Schnakenberg model. First, in region IV (Fig. 4a), a negative valued perturbation of
the HSS is predicted to induce patterning. This along with the general dependence of
response thresholds in regions II, IV were verified numerically (results not presented).
Second, the LPA results suggest the resulting solution will take the form of a stable
interface separating high and low regions for u.
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Fig. 4 Comparison of linear stability, local perturbation, and full PDE bifurcation analysis results for
the substrate inhibition model (Eqs. (17a), (17b)). All diagrams are computed with D = 10, ρ = 13,
K = 0.125, α = 1.5, and b = 80 and all conventions are as in Fig. 2. (a) Local perturbation analysis
results: Three regimes of behavior are predicted: No patterning (I), linearly (Turing) unstable (III), and
linearly stable where a sufficiently large perturbation yields a response (II, IV). (b) Linear stability analy-
sis (LSA) results: For each ε, two Turing bifurcations are seen. Dots mark the location of the right Turing
bifurcation for different values of ε. As ε → 0, the edges of the Turing region approach that predicted
by the local perturbation analysis results in (a). (c) PDE Bifurcation Results: In agreement with the LPA
results, patterned solutions are found both inside and outside the linearly unstable regime. (d) Example
solutions drawn from starred points for ε = 0.05 in (c). As predicted by the LPA results, these solutions
show a stable interface separating high/low regions of u

Consider region II where this system has two local branches, one unstable and the
other stable. In this case, a perturbation of ul above the unstable local branch will be
attracted to the stable local branch. This suggests that a localized perturbation of the
HSS in the RDE’s will saturate at a specific height on the O(1) reaction timescale.
On longer timescales, diffusion becomes important and will cause the transition layer
between the raised region and the lower background concentration to move. At this
point, the region of high activity is no longer spatially localized, the asymptotic ap-
proximation breaks down (see Sect. 6 for further discussion), and the variable ul

ceases to have meaning.
We can, however, reasonably hypothesis that the resulting solution will take the

form of a stable interface. The lack of a second, higher HSS suggests the high con-
centration region created by the perturbation cannot encompass the entire domain and
one of two things will happen: (1) the transition layers will stop/stall somewhere in
the interior of the domain leaving stable interfaces, or (2) the solution will eventually
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collapse back to the unique HSS. LPA results can not be used to rule out the latter
possibility, but results in Fig. 4d show stable interface solutions for multiple values
of a. These results again support the suppositions in Sect. 3.

One final note is in order. Many nonlinear analysis techniques require initial
knowledge of a solution to form a simplifying ansatz. In systems such as the
Schnakenberg example, it is common to assume that the solution being investigated
takes the form of a spike and the problem is reduced to finding a homoclinic orbit of a
simplified equation. In cases where interface type solutions are “expected,” a simpli-
fying ansatz is used to reduce the problem to finding a heteroclinic orbit of a reduced
problem. This analysis requires no such ansatz or a priori knowledge of the solutions
being sought. The tradeoff of course is that results provide no rigorous information
about the form of any resulting pattern.

4 Detection of Linear Instabilities by the LPA

The previous section demonstrated points 1–4 in Sect. 3. Points 2–4 relate to non-
linear patterning regimes. As with any general nonlinear result, these will likely be
difficult to prove and have only been supported by the results of previous examples.
The supposition in point 1 does, however, hold in generality, which is shown in this
section. Since linear stability is determined by eigenvalues of an associated Jacobian,
let us compare eigenvalues of the linearized RDE’s to those of the linearized LPA–
ODEs, which I claim have predictive value. Before continuing, let us dispense with
notational definitions. Define Jk to be the Jacobian of Eq. (1a) linearized about the
HSS (us, vs) with respect to periodic perturbations of the form exp(ikx)

Jk =
[
fu(u

s, vs;p) − k2ε2I fv(u
s, vs;p)

gu(u
s, vs;p) gv(u

s, vs;p) − k2DI

]
. (18)

Recall that f : RM ×R
N →R

M,g : RM ×R
N →R

N and denote eigenvalues of this
matrix as {λk

i (ε,D,p)}i=1:(M+N). Assume these are in decreasing order according
to their real part so that λk

1 has the largest real part and determines stability. Further
note that J0 is precisely the Jacobian of the well-mixed system with associated eigen-
values {λ0

i (p)}i=1:(M+N). Now define JLP to be the linearization of the LPA–ODE’s
(Eqs. (2a)–(2c)) about (ug, vg,ul) = (us, vs, us)

JLP =
⎡

⎣
fu(u

s, vs;p) fv(u
s, vs;p) 0

gu(u
s, vs;p) gv(u

s, vs;p) 0
0 fv(u

s, vs;p) fu(u
s, vs;p)

⎤

⎦ . (19)

A direct consequence of the decoupling of Eqs. (2a), (2b) from Eq. (2c) is that JLP
is block triangular with the upper left block being precisely J0. Thus, JLP exactly
inherits all eigenvalues of the well-mixed system and as such contains all well-mixed
stability information. These eigenvalues will be referred to as the well-mixed eigen-
values of JLP. The remaining eigenvalues come from the lower right block fu(u

s, vs).
Denote these as {λLP

j (p)}j=1:M and assume they are ordered according to decreasing

real part so that λLP
1 has the largest real part. Then the following asymptotic result

relating {λLP } and {λk} (for k > 0) holds.
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Theorem 4.1 Assume ε2 � 1 � D, ∇f , ∇g are O(1) with respect to ε and D, and
fix a wave number k > 0. Further assume that fu(u

s, vs), gv(u
s, vs) are diagonaliz-

able. Then:

1. For each i = 1 : M , λk
i = λLP

i − k2ε2 + c(D) where c(D) → 0 as D → ∞.
2. For each i = M + 1 : M + N , Re(λk

i ) = O−(D) where O−( ) signifies a negative
valued quantity of that order.

For proof of this result, see Appendix B. A direct consequence of this is that the re-
maining eigenvalues of the linearized LPA–ODE’s asymptotically approximate Tur-
ing growth rates (λk

1(ε,D,p) → λLP
1 (p) as ε → 0,D → ∞) and linear instability

of the HSS branch of the LPA–ODE’s corresponds directly to Turing instability for
the RDEs. The decoupling of Eqs. (2a), (2b) from Eq. (2c) thus separates well mixed
and Turing stability information with the upper left block of Eq. (19) providing all
well-mixed stability information and the bottom right block providing Turing stabil-
ity information. Thus, point 1 in Sect. 3 holds for general systems of the form (1a),
(1b) when fu(u

s, vs), gv(u
s, vs) are diagonalizable.

4.1 LPA Bifurcations Locate the Edge of “Limiting” Linearly Unstable Parameter
Regimes

Recall from the linear stability results in the previous examples that the location of
a Turing bifurcation of the RDE’s appears to converge to a limiting point as ε →
0,D → ∞. This is in line with Murray’s (1982) observation that a linearly unstable
regime of parameter space converges to a “limiting” unstable regime in this limit.
As indicated by the comparison of the locations of Turing bifurcations and those
predicted by the LPA, the LPA precisely locates the edge of these “limiting” unstable
regimes. This is a consequence of the following corollary of Theorem 4.1.

Corollary 4.2 Consider a particular set of parameters p. If the global branch of the
LPA–ODE’s is linearly unstable (i.e., Re(λLP

1 (p)) > 0), then the HSS of the RDE’s is
linearly unstable for sufficiently extreme values of ε and D (i.e., Re(λk

1(ε,D,p)) > 0
for some k > 0). Furthermore, if the global branch is linearly stable in the LPA sense,
the HSS is linearly stable for sufficiently extreme values of ε,D as well.

5 Applications of the LPA to More Complex Systems

One of the primary benefits of the local perturbation analysis is the relative ease with
which it can be applied to more complex systems, common in biological applications.
Existing methods become either difficult to implement or intractable in such cases.
However, with the help of ODE analysis software packages such as Auto (Doedel
et al. 2007) and Matcont (Dhooge et al. 2003), this method scales well to larger
systems. The following example demonstrates an application of the LPA to a system
involving 9 RDEs.
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5.1 Chemotactic Polarization Example

Much effort has been devoted to understanding the process by which cells, rang-
ing from white blood cells to cancer cells, move up chemical gradients. Reorgani-
zation of regulatory molecules, primarily GTPases and phosphoinositides, is known
to be a precursor to such motion. In response to an applied chemical gradient, these
molecules self organize to form a polar state where some localize in the cell “front”
(Cdc42, Rac, PI3K, and PIP3) and others in the “rear” (Rho, PTEN). Front related
molecules generate protrusion, rear related molecules generate contraction, and their
combined activity leads to directed motion.

Each of the three GTPases (Cdc42 C, Rac R, and Rho ρ) effectively has two
forms, membrane bound and cytosolic with only the membrane bound form in an
active state. Over the timescale of polarization events, the amount of each GTPase
is conserved with diffusion and cross talk mediated cycling between the two states
leading to segregation of active forms. These cross talk interactions and the influence
of phosphoinositide feedback are the focus of this discussion.

While these regulators are conserved across a wide range of eukaryotic cells, the
cross talk interactions between them is not. This variation has led to extensive exper-
imental work aimed at dissecting these interactions in different cell types and numer-
ous models (reviewed in Jilkine and Edelstein-Keshet 2011) aimed at understanding
their results. Here, I describe and analyze a variant of a model (Holmes et al. 2012b;
Lin et al. 2012) motivated by work on HeLa cell polarization.

I investigate a structural perturbation of that model, introducing mutual antago-
nism between Rac and Rho, known to be present in numerous cell types (Sander
et al. 1999; Caron 2003; van Leeuwen et al. 1997). A schematic diagram of this
model is in Fig. 5a. The dashed interaction, Rho mediated inhibition of Rac, is
the structural addition differentiating this model from that in (Holmes et al. 2012b;
Lin et al. 2012). Model equations encoding these interactions are found in Eqs. (34a)–
(34d) with a description of parameters and their values in Table 2. See Appendix C
for a brief description of this model and (Holmes et al. 2012b; Lin et al. 2012) for
more extensive discussion of the original network and its parameters.

What effect does the addition of Rho mediated inhibition of Rac have on the be-
havior of this network? To investigate this, a nondimensional parameter (f2) mod-
ulating the strength of this inhibitory interaction is introduced. When f2 = 0, no
inhibition is present and the original network is recovered. When f2 increases, the
strength of the inhibition increases. LPA and numerical simulation results in Fig. 5
show the effect of increasing the strength of this feedback.

5.2 LPA and Numerical Simulation Results

Figure 5b shows the results of a LPA of this model with moderate feedback, f2 = 2.
The LPA was performed assuming membrane bound GTPases are slow diffusing
(Dm = 0.1 µm2/s), and cytosolic GTPases (Dc = 50 µm2/s) are fast. For refer-
ence, cell sizes considered are on the order of 10–20 µm. Phosphoinositide diffu-
sion lies between the fast and slow regimes. However, as in Holmes et al. (2012b),
LPA results are similar with it chosen as either fast or slow. In Fig. 5, they are
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taken to be slow variables. The LPA reduction in this case leads to a system
of 15 ODE’s for 6 local variables (Cl,Rl, ρl,P l

1,P
l
2,P

l
3) and 9 global variables

(Cg,Rg,ρg,C
g
c ,R

g
c , ρ

g
c ,P

g

1 ,P
g

2 ,P
g

3 ).
The bifurcation parameter IR1 represents a basal Rac activation rate. Its variation

could result from either population heterogeneity or external stimulation of Rac as in
Lin et al. (2012). In Fig. 5b, three regimes of behavior are found at different activation
levels. For both low and high levels of basal activation, no response due to either
instability or an applied stimulus can occur. For increasing levels of activation, a
regime where sufficiently large perturbations yield a response is found. Again, this
regime terminates in a subcritical Turing bifurcation as the response threshold shrinks
to zero. This suggests increasing the spatially uniform activation rate increases the
sensitivity of a cell to heterogeneous stimuli, experimentally supported in Lin et al.
(2012).

At yet higher values of IR1, a second narrow linearly stable patterning regime
is found. Numerical simulations verify the presence of all but this narrow regime,
which likely requires more extreme diffusivities to be observed numerically. LPA
results again suggest solutions will evolve to a polarized profile with a transition layer
separating regions of homogeneous activity levels. This was also verified numerically
with an indicative steady state solution shown in the inset (IR1 = 1.1).

Now consider the effect of increasing/decreasing the strength of Rho � Rac feed-
back. Labeled branch points (BP) indicate the approximate boarder of the unstable
regime. Fold bifurcations (LP) mark the boarder of the nonlinear patterning regimes.
Standard two parameter continuation techniques are applied to follow these bifurca-
tions as f2 is varied, Fig. 5c. At low values, both regimes persist. As f2 increases,
the branch points collapse at f2 ∼ 5 and the linearly unstable regime between them
is lost. For higher values of f2, the two fold bifurcations of the local branch per-
sist suggesting the continued presence of a linearly stable patterning regime between
them.

Marked points on Fig. 5c indicate parameter values where numerical simulation
of the full RDE system was performed. Circles indicate a parameter set where small
noise (machine noise) induces a response. Points marked × indicate sufficiently large
perturbations are required for a response. Beyond these points, no patterning was de-
tected numerically at the base diffusion values. When Dm = .01 µm2/sec, parameter
regimes expand with squares marking additional parameter sets where sufficiently
large perturbations yield a response.

The linearly unstable regime for the RDE’s is confined to that predicted by the LPA
and as expected, stimulus induced patterning is present to the left but not to the right
of that regime. While the location of patterning regimes in parameter space agree well
with predictions, the expanse of these regimes is substantially smaller than predicted,
particularly for the nonlinear patterning regime. However, as diffusivities are driven
to yet further extremes, these regimes do expand further (results not presented).

I consider one final perturbation of this network, PI3K knockout, which is accom-
plished here by setting kPI3K=0. This has the effect of removing feedback between
GTPase’s and phosphoinositide’s. The same analysis above was performed with re-
sults in Fig. 5d. Similar parameter space structure exists with linearly unstable and
stable patterning regimes. In this case, however, they are substantially compressed
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Fig. 5 (a) Diagram of interactions between GTPases (Cdc42, Rac, and Rho) and phosphoinositides (PIP1,
PIP2, PIP3) represented by Eqs. (34a)–(34d). An arrow represents activation, a bar represents inactivation.
(b) Local perturbation analysis of this system with f2 = 2 and IR1 the bifurcation parameter. The vertical
axis is the value of Rl (local form of Rac). The monotonic branch is the global branch, the loop is the
local branch ordered from left to right there are four regions: no patterning, sufficiently large perturbations
yield a response, linearly unstable, and no patterning. There is a small nonlinear patterning regime between
IR1 ∼ 1.6,1.7, but this regime appears to only be present for extreme diffusions beyond those considered
here. (Inset) Numerical simulation results at f2 = 2, IR1 = 1.1. (c) Two parameter continuation of the
branch points (BP), indicating the edge of a linearly unstable regime, and fold bifurcations (LP) of the local
branch. Markers represent simulation results of the full RDE system. Circles indicate a Turing instability
where machine noise induces patterning, “x” indicates a simulated perturbation is required for patterning,
and a square indicates a parameter set for which no pattern forms at Dm = 0.1 but where a perturbation
initiates patterning for Dm = 0.01. (d) The same as (c) with PI3K knockdown removing the feedback of
PIP3 → Rac. See Table 2 for parameters

in parameter space. So, while PI3K/PIP3 mediated feedback is not necessary for po-
larization, it does make it more robust in a parametric sense. This is consistent with
observations (Ferguson et al. 2006; Lin et al. 2012) showing PI3K/PIP3 localization
is not necessary for efficient chemotaxis, but its knockout substantially reduces the
fraction of cells that do chemotax.

6 Limitations of the LPA Approximation

Here, I stress the limitations of the local perturbation analysis. The purpose of the
LPA is not to approximate a solution of Eqs. (1a), (1b) only the initial response of a



176 W.R. Holmes

HSS to a localized perturbation (4), i.e., growth or decay. Slow diffusion timescale
and transition layer effects are not considered and the LPA–ODEs (2a)–(2c) only
describe the evolution of the perturbation on short to intermediate timescales. These
effects can become important and the leading order approximation above can fail for
one of two basic reasons.

• The perturbation becomes large. This would cause a number of effects. First, if g is
unbounded, the correction term in Eq. (10) could become O(1) and affect leading
order dynamics. Second, if f,g are unbounded, neglected Taylor expansion terms
of the form εfu, εfv , εgu, or εgv can become O(1), influencing the leading order
dynamics. Third, transition layer effects could influence the dynamics of (U,V )

on Rl .
• The perturbation spreads in space. This would again cause the area of the perturbed

region to become O(1), causing the correction term in Eq. (10) to affect leading or-
der dynamics. These effects would, however, occur on the slow diffusion timescale,
which is not considered here.

In either case, these effects only become important after the perturbation has grown
in amplitude, constituting a response. Given these limitations though, care should be
taken when interpreting the meaning of the variable ul . It’s value represents the height
of an idealized local perturbation. Once that perturbation evolves into a pattern and
the asymptotic reduction breaks down, the meaning of this variable is lost. Therefore,
its value provides no quantitative information about the resulting pattern.

As a result of neglecting these higher order effects, LPA predictions are asymp-
totic in nature and require sufficiently distinct diffusivities to be valid. Therefore,
the predicted location of bifurcations between parameter regimes only approximate
the location of actual bifurcations, with this approximation improving as diffusivi-
ties become more extreme. In some cases, bifurcations of the RDE system with finite
diffusivities (such as the saddle node bifurcation in the Schnakenberg case) are not
captured at all by the LPA.

Further, all diffusion related information is lost. Therefore, length scale infor-
mation cannot be obtained, nonlinear phenomena such as peak splitting (Kolokol-
nikov et al. 2005b, 2005c; Barrass et al. 2006) will not be found, pattern selec-
tion, or abberent effects from domain growth, for example (Crampin et al. 1999;
Barrass et al. 2006), cannot be discussed, and dependence of the resulting pattern on
domain size or diffusion coefficients will not be found. For these reasons, the LPA
should be viewed primarily as an efficient, scalable nonlinear stability technique, ca-
pable of detecting patterning beyond the confines where linear stability analysis is
useful. It should not be viewed as a replacement for linear stability or other nonlin-
ear PDE analysis techniques. Rather, it is a complement to them that can be used to
inform further analysis when system complexity allows.

7 Discussion

A new nonlinear bifurcation technique for systems of reaction diffusion equations
with large diffusion disparities (1a), (1b) was developed and demonstrated. This “Lo-
cal Perturbation Analysis” (LPA) determines the response of a HSS of a system of
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reaction diffusion equations to a spatially localized, large amplitude perturbation. The
structure of the perturbation is not an ansatz, but is instead chosen for convenience
and to aid further simplification. Under proper asymptotic assumptions about the dif-
fusivities ε,D and the form of the perturbation, its evolution can be approximated to
leading order by a collection of ODEs describing the perturbation (local variables)
and the broader domain (global variables).

A bifurcation analysis of this collection of LPA–ODEs reveals two types of so-
lution branches: (1) a “global” branch of solutions representing HSS solutions of
the RDEs, and (2) “local” solution branches unique to the LPA–ODEs. The location
and stability of the global branches provides linear stability information for the RDEs
(1a), (1b). The location and stability of the local branches provides nonlinear stability
information. Application of this method and interpretation of its results were demon-
strated using two classical example systems, Schnakenberg and substrate inhibition.
Through these examples, we demonstrated that this method provides a wealth of in-
formation and has a number of advantages over other linear and nonlinear analysis
techniques:

(i) It accurately detects the location of linear instabilities (when diffusivities are
sufficiently different). It is however more than simply a scalable Turing analysis
and provides different information.

(ii) It detects nonlinear patterning regimes where homogeneous steady states are
linear stable and linear stability techniques fail to provide information.

(iii) In these regimes, it qualitatively characterizes the dependence of response
thresholds on reaction parameters, a useful capability in biological applications.

(iv) The global bifurcation structure can be interpreted to provide reasonable con-
jectures about the type of pattern that might evolve on longer timescales.

The true value and power of this method however becomes evident in Sect. 5.
There a biologically motivated system of nine chemotaxis regulators was investi-
gated. With the help of readily available and relatively easy to use software, the same
methodology and analysis that were employed in the much simpler earlier examples
were applied without change in this case. This provided a concise, detailed overview
of the parameter space structure of this complex model that no other method is ca-
pable of. Further, it allowed rapid investigation of the effects of both parameter and
structural variations of the reaction network that yielded insights into the function of
the system. For these reasons, the LPA has the potential to be of use in an array of
scientific fields where RDEs arise.
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Appendix A: Schnakenberg Asymptotics

This analysis closely follows (Ward and Wei 2002). Consider the Schnakenberg sys-
tem (11a), (11b) on the interval [−1,1]. In Ward and Wei (2002), it was shown that
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this system exhibits stable spike solutions when a = 0. That analysis can be extended
to show such spikes in fact exist for all values of a under certain asymptotic condi-
tions.

To begin, define

D = D̄

ε
, v = εv̄, u = ū

ε
, (20)

and subsequently drop the¯ to yield

ut (x, t) = aε − u + u2v + εuxx, (21)

εvt (x, t) = b − u2v

ε
+ Dvxx, (22)

Assuming D � 1/ε, v = v0 +εv1(x)+· · · , and integrating (22), it can be determined
that

2b = v0

ε

∫ 1

−1
u2(x, t) dx. (23)

A spike solution of the form u(x) = u0 +u1(x/ε) is now sought where u0 and u1 are
the outer and inner solutions. It is assumed u0 is spatially constant. Collecting terms
involving the same powers of ε shows the outer solution is u0 ≈ aε and the inner
solution satisfies

u′′
1(z) − u1(z) + u2

1(z)v0 = 0 (24)

on x/ε = z ∈ [−1,1] with no flux boundary conditions. The solution to this problem
is known (see Ward and Wei 2002) yielding

u(x) = u0 + u1 = aε + 3

2v0
sech2

(
x

2ε

)
. (25)

Integrating the square of this expression and substituting into (23) yields v0 = b/3.
Unravelling the change of coordinates yields the approximate spike solution for the
original problem (Eqs. (11a), (11b)) on [−1,1]

u(x) ≈ a + b

2ε
sech2

(
x

2ε

)
, v(x) ≈ 3ε

b
. (26)

So the Schnakenberg system (11a), (11b) in fact produces spike type solutions for
all values of a in the limit ε → 0. This is in agreement with the results of the LPA
in Fig. 2a and the progression of the fold bifurcation (where the spike is lost) to ∞
as a → ∞ in the bifurcation analysis in Fig. 2c. Further, the maximum value of u

in (26) with a = 0 compares to good precision with the maximum values shown at
a = 0 in Fig. 2c, supporting these results.

Appendix B: Proof of Theorem 4.1

To prove Theorem 4.1, first notice the eigenvalues of Jk (18) can be segregated into
two regions of the complex plane using the Gershgorin circle theorem (see Fig. 6).
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Fig. 6 Schematic of the separation of the eigenvalues of Jk in the complex plane. Grey circles indicate
the different Gershgorin circles Ci . The larger darker circles indicate Cl and Cs , which contain all eigen-
values of Jk . These circles separate those eigenvalues into two classes with O(1) and O−(D) real part,
respectively

Fix a specific wave number k, let ai,j be the elements of Jk , and define

Ri =
∑

j �=i

|ai,j |, Ci = C(ai,i ,Ri) (27)

where C(a, r) is the circle with center a and radius r . The Gershgorin circle theorem
states that each eigenvalue of Jk lies in at least one of the disks Ci . The structure of
Jk is such that the off diagonal entries are O(1) with respect to D. So R = max{Ri} is
O(1). The diagonal entries fall into two categories, those that are O(1) (correspond-
ing to the small diffusion entries), and those that are −k2D + O(1) (corresponding
to large diffusion entries). Define Ωs to be the union of the disks Ci that are charac-
terized by O(1) diagonal entries and Ωl as the union of disks characterized by O(D)

diagonal entries. Since these disks have a maximal radius R independent of D, there
exists disks Cl = C(−k2D,κlR) and Cs = C(0, κsR) so that for constants κl,s in-
dependent of D, Ωs ⊂ Cs and Ωl ⊂ Cl . For sufficiently large D, Cs and Cl do not
overlap and hence separate {λk} into two sets (see Fig. 6).

So, for each i, either Re(λk
i ) = O−(D), or Re(λk

i ) = O(1). Since det(Jk) =
O(DN), {λk

i }i=M+1:M+N must have O−(D) real part. Also note that the imagi-
nary parts of all eigenvalues are constrained to be less than max{κs, κl}R so that
Im(λi

k) = O(1) for all i as well, so |λk
i | = O(1) for i = 1 : M .

Eigenvalues of Jk are roots of the characteristic polynomial

∣∣Jk − λI
∣∣ =

∣∣∣∣
fu

(
us, vs

) − (
k2ε2 + λ

)
I fv

(
us, vs

)

gu

(
us, vs

)
gv

(
us, vs

) − (
k2D + λ

)
I

∣∣∣∣ = 0, (28)

where I is a properly sized identity matrix. Let P and Q be the unitary matrices
that diagonalize fu(u

s, vs) and gv(u
s, vs). Then in particular the diagonal entries of

P −1fu(u
s, vs)P are {λLP

j } and the entries of Q−1gv(u
s, vs)Q are O(1). Define

T =
[
P 0
0 Q

]
. (29)
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Table 2 Model parameters: Base parameter set for the model depicted in Fig. 5a and represented in
Eqs. (34a)–(34d). The primary parameters of interest are IR1, which represents a basel activation rate
parameter for Rac, and f2 which modulates the strength of inhibitory feedback from Rho to Rac

Parameter name Value Meaning

L0 20 µm Domain size

Ct ,Rt , ρt 2.4,7.5,3.1 µM Total levels of Cdc42, Rac, and Rho

Îc, ÎR1, ÎR2, Îρ 2.95,0.2,0.2,6.6 µM s−1 Cdc42, Rac, and Rho activation rates

a1, a2, a3 1.25,1,1.25 µM Cdc42 and Rho half max inhibition levels

n 3 Hill coefficient for inhibitory connections

α 0.55 s−1 Cdc42 dependent Rac activation

δC, δR, δρ 1 s−1 GAP decay rates of activated Rho-proteins

IP 1 10.5 µM/s PIP1 input rate

δP 1 0.21 s−1 PIP1 decay rate

kPI5K, kPI3K, kPTEN 0.084,0.00072,0.432 µM−1 s−1 Baseline conversion rates

k21 0.021 s−1 Baseline conversion rate

P3b 0.15 µM Typical level of PIP3

Dm,Dc,DP 0.1,50,5 µm2/s Diffusion Rates

f2 1 Nondimensional feedback parameter

Then the eigenvalue problem translates to

∣∣∣∣

[
λLP

] − k2ε2I − λI P −1fvQ

Q−1guP Q−1gv

(
us, vs

)
Q − k2DI − λI

∣∣∣∣ =
∣∣∣∣
A1 A2
A3 A4

∣∣∣∣ = 0 (30)

where [λLP ] is the diagonal form of fu(u
s, vs). Notice that A1,A4 are diagonal.

Now consider an eigenvalue λ whose real part is O(1). In this case, the diagonal
entries of A4 are O−(D) and it is nonsingular. It can thus be used to eliminate A2.
After this is done, the eigenvalue problem becomes

∣∣∣∣

[
λLP

] − k2ε2I + O
(
D−1

) − λI 0
Q−1guP Q−1gv

(
us, vs

)
Q − k2DI − λI

∣∣∣∣ = 0. (31)

Since the bottom right block is nonsingular, it must be true that

det
([

λLP
] − k2ε2I + O

(
D−1) − λI

) = 0. (32)

where O(D−1) is a properly sized matrix with entries of this size. With D = ∞, the
roots of this polynomial are simply {λLP

j − k2ε2}. It is tempting to view Eq. (32) as
a perturbation of this case and apply some form of perturbation bound. However, fu

is not Hermitian, which is usually required for such bounds. Instead, the best we can
say is that by continuity of the determinant, the roots of this polynomial satisfy

λ = λLP
j − k2ε2 + c(D), (33)

where c(D) → 0 as D → ∞.
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Appendix C: GTPase Model Equations

Figure 5a schematically diagrams interactions between three interacting GTPases and
three phosphoinositides. I briefly outline the model equations describing these inter-
actions. Further specifics can be found in Holmes et al. (2012b), Lin et al. (2012).
Modifications of the model presented in those references, which are the subject of
investigation here, are described in the main text. Each GTPase undergoes conserva-
tive cycling between active membrane bound and inactive forms in the cell interior
by (un)binding to the membrane. These dynamics are described by

∂G

∂t
= IG

Gc

Gt

− δGG + DmGxx,

∂Gc

∂t
= −IG

Gc

Gt

+ δGG + DcG
c
xx,

(34a)

where G = R,ρ,C represents the membrane bound form and Gc represents an in-
active cytosolic form. Phosphoinositides interconvert between three states through
the hydrolysis/phosphorylation activity of PI5K, PI3K, PTEN, etc., which are not ex-
plicitly modeled. The GTPase activation rate functions encoding the interactions in
Fig. 5a are defined by

IC =
(

ÎC

1 + (ρ/a1)n

)
, IR =

(
ÎR1 + αC + ÎR2

P3
P3b

1 + f2(ρ/a3)n

)
,

Iρ = Îρ

1 + (R/a2)n
.

(34b)

Phosphoinositide kinetics are modeled by linear and mass action kinetics

∂P1

∂t
= IP 1 − δP 1P1 + k21P2 − fPI5K(R,C,ρ)P1 + DP P1xx,

∂P2

∂t
= −k21P2 + fPI5K(R,C,ρ)P1 − fPI3K(R,C,ρ)P2

+ fPTEN(R,C,ρ)P3 + DP P2xx,

(34c)

∂P3

∂t
= fPI3K(R,C,ρ)P2 − fPTEN(R,C,ρ)P3 + DP P3xx,

with feedback terms

fPI3K = kPI3K

2

(
1 + R

Rt

)
, fPI5K = kPI5K

2

(
1 + R

Rt

)
,

fPTEN = kPTEN

2

(
1 + ρ

ρt

)
.

(34d)

See Table 2 for a base parameter set for this model.
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