Math2E - Practice Midterm2

1. Label each expression as a scalar quantity, a vector quantity or undefined, if f is a scalar function and \mathbf{F} is a vector field.
a. $\nabla \cdot(\nabla f)$
b. $\nabla \times(\nabla \cdot \mathbf{F})$
c. $\nabla(\nabla \times \mathbf{F})$
d. $\nabla(\nabla \cdot \mathbf{F})$
e. $\nabla \times(\nabla f)$
2. $\mathbf{F}=\left(z^{2}+2 x y\right) \mathbf{i}+x^{2} \mathbf{j}+2 x z \mathbf{k}$. (a): Determine whether the vector field is conservative; (b): Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C runs from $(2,3,1)$ to $(4,-1,0)$.
3. Evaluate $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$, where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$, and C is positively oriented.
4. Evaluate $\iint_{S}(x-z) d S$, where S is the portion of the cylinder $x^{2}+z^{2}=1$ above the $x y$-plane between $y=1$ and $y=2$.
5. Evaluate the flux integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$, where $\mathbf{F}=\langle y,-x, z\rangle, S$ is the portion of $z=\sqrt{x^{2}+y^{2}}$ below $z=4$. (\mathbf{n} downward).
