Math2E - Practice Midterm2

- 1. Label each expression as a scalar quantity, a vector quantity or undefined, if f is a scalar function and \mathbf{F} is a vector field.
 - a. $\nabla \cdot (\nabla f)$ b. $\nabla \times (\nabla \cdot \mathbf{F})$
 - c. $\nabla(\nabla \times \mathbf{F})$
 - d. $\nabla(\nabla \cdot \mathbf{F})$
 - e. $\nabla \times (\nabla f)$

2. $\mathbf{F} = (z^2 + 2xy)\mathbf{i} + x^2\mathbf{j} + 2xz\mathbf{k}$. (a): Determine whether the vector field is conservative; (b): Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C runs from (2,3,1) to (4,-1,0). 3. Evaluate $\int_C (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy$, where C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$, and C is positively oriented.

4. Evaluate $\int \int_S (x-z) dS$, where S is the portion of the cylinder $x^2 + z^2 = 1$ above the xy-plane between y = 1 and y = 2.

5. Evaluate the flux integral $\int \int_S \mathbf{F} \cdot \mathbf{n} dS$, where $\mathbf{F} = \langle y, -x, z \rangle$, S is the portion of $z = \sqrt{x^2 + y^2}$ below z = 4. (**n** downward).