1. Label each expression as a scalar quantity, a vector quantity or undefined, if f is a scalar function and \mathbf{F} is a vector field.
 a. $\nabla \cdot (\nabla f)$
 b. $\nabla \times (\nabla \cdot \mathbf{F})$
 c. $\nabla (\nabla \times \mathbf{F})$
 d. $\nabla (\nabla \cdot \mathbf{F})$
 e. $\nabla \times (\nabla f)$
2. \(\mathbf{F} = (z^2 + 2xy)\mathbf{i} + x^2\mathbf{j} + 2xz\mathbf{k} \). (a): Determine whether the vector field is conservative; (b): Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(C \) runs from \((2, 3, 1)\) to \((4, -1, 0)\).
3. Evaluate \(\int_C (y + e^{\sqrt{x}})dx + (2x + \cos y^2)dy \), where \(C \) is the boundary of the region enclosed by the parabolas \(y = x^2 \) and \(x = y^2 \), and \(C \) is positively oriented.
4. Evaluate \(\int_S (x - z) \, dS \), where \(S \) is the portion of the cylinder \(x^2 + z^2 = 1 \) above the \(xy \)-plane between \(y = 1 \) and \(y = 2 \).
5. Evaluate the flux integral \(\iint_S \mathbf{F} \cdot n \, dS \), where \(\mathbf{F} = \langle y, -x, z \rangle \), \(S \) is the portion of \(z = \sqrt{x^2 + y^2} \) below \(z = 4 \). (n downward).