$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=4 & 0<x<1, \quad 0<y<2 \\
u(x, 0)=x^{2}, & u(x, 2)=(x-2)^{2}, \quad 0 \leq x \leq 1 \tag{1}\\
u(0, y)=y^{2}, & u(1, y)=(y-1)^{2}, \quad 0 \leq y \leq 2
\end{array}
$$

1. (30 points) Use Finite Difference method to solve (1) with the step size $\Delta x=\Delta y=$ 0.5 , compare the results to the actual solution $u(x, y)=(x-y)^{2}$.

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}-\frac{4}{\pi^{2}} \frac{\partial^{2} u}{\partial x^{2}}=0 & 0<x<4, \quad t>0 \\
u(0, t)=u(4, t)=0, & t>0 \tag{2}\\
u(x, 0)=\sin (\pi x / 4)(1+2 \cos (\pi x / 4), & 0 \leq x \leq 4
\end{array}
$$

2. (30 points) Use Forward Difference method to solve (2) at $t=0.4$ with the step size $\Delta x=0.2 . \Delta t=0.04$, compare your results at $t=0.4$ to the actual solution $u(x, t)=e^{-t} \sin (\pi x / 2)+e^{-t / 4} \sin (\pi x / 4)$.

$$
\begin{equation*}
y^{\prime \prime}=2 y^{3}-6 y-2 x^{3}, \quad 1 \leq x \leq 2, \quad y(1)=2, y(2)=5 / 2, \tag{3}
\end{equation*}
$$

3. (40 points) Use NonLinear Finite Difference method with $T O L=10^{-4}$ to solve (3) with the step size $h=0.1$, compare your results to the actual solution $y(x)=$ $x^{-1}+\ln x$.
