$$
\text { Math2E - Practice Midterm } 1
$$

1. Use the chain rule to find $g^{\prime}(t)$, where $g(t)=f(x(t), y(t)), f(x, y)=x^{2} y+y^{2}, x(t)=$ $e^{4 t}$ and $y(t)=\sin t$.
2. Evaluate $\iint_{R}(y-4 x) d A$, where R is bounded by $y=4 x+2, y=4 x+5, y=$ $3-2 x$, and $y=1-2 x$.
3. Evaluate $\int_{C} 2 x d s$, where C is the portion of $y=x^{2}$ from $(-2,4)$ to $(2,4)$.
4. Evaluate $\int_{C} 3 y^{2} d y$, where C is the quarter-circle $x^{2}+y^{2}=4$ from $(0,2)$ to $(-2,0)$.
5. $\mathbf{F}(x, y)=\left(x e^{x^{2}}-2, \sin y\right)$
(a): Find a function f such that $\mathbf{F}=\nabla f$;
(b): Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the portion of the parabola $y=x^{2}$ from $(-2,4)$ to $(2,4)$.
