Math2E - Practice Midterm2

- 1. Label each expression as a scalar quantity, a vector quantity or undefined, if f is a scalar function and \mathbf{F} is a vector field.
 - a. $\nabla \cdot (\nabla f)$ b. $\nabla \times (\nabla \cdot \mathbf{F})$ c. $\nabla (\nabla \times \mathbf{F})$ d. $\nabla (\nabla \cdot \mathbf{F})$ e. $\nabla \times (\nabla f)$

2. Evaluate $\int_C (\tan x - y^3) dx + (x^3 - \sin y) dy$, where C is the circle $x^2 + y^2 = 2$, and C is positively oriented.

3. Evaluate $\int \int_S (x-z) dS$, where S is the portion of the cylinder $x^2 + z^2 = 1$ above the xy-plane between y = 1 and y = 2.

4. Evaluate the flux integral $\int \int_S \mathbf{F} \cdot \mathbf{n} dS$, where $\mathbf{F} = \langle y, -x, z \rangle$, S is the portion of $z = \sqrt{x^2 + y^2}$ below z = 4. (**n** downward).

5. Evaluate $\int \int_S \mathbf{F} \cdot \mathbf{n} dS$, where $\mathbf{F}(x, y, z) = 4x\mathbf{i} + (x^2 - 2y)\mathbf{j} + (3z + x^2)\mathbf{k}$ and S is the boundary of $z = x^2 + y^2$ and $z = 2 - x^2 - y^2$ with outward orientation.