Math2E - Practice Midterm2

1. Label each expression as a scalar quantity, a vector quantity or undefined, if f is a scalar function and \mathbf{F} is a vector field.
a. $\nabla \cdot(\nabla f)$ b. $\nabla \times(\nabla \cdot \mathbf{F})$
c. $\nabla(\nabla \times \mathbf{F}) \quad$ d. $\nabla(\nabla \cdot \mathbf{F})$
e. $\nabla \times(\nabla f)$
2. Evaluate $\int_{C}\left(\tan x-y^{3}\right) d x+\left(x^{3}-\sin y\right) d y$, where C is the circle $x^{2}+y^{2}=2$, and C is positively oriented.
3. Evaluate $\iint_{S}(x-z) d S$, where S is the portion of the cylinder $x^{2}+z^{2}=1$ above the $x y$-plane between $y=1$ and $y=2$.
4. Evaluate the flux integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$, where $\left.\mathbf{F}=<y,-x, z\right\rangle, S$ is the portion of $z=\sqrt{x^{2}+y^{2}}$ below $z=4$. (\mathbf{n} downward).
5. Evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$, where $\mathbf{F}(x, y, z)=4 x \mathbf{i}+\left(x^{2}-2 y\right) \mathbf{j}+\left(3 z+x^{2}\right) \mathbf{k}$ and S is the boundary of $z=x^{2}+y^{2}$ and $z=2-x^{2}-y^{2}$ with outward orientation.
