Math2E - Practice Final

June 5, 2009

1. Evaluate $\int_{C} x y d x+y d y, C$ is the sine curve $y=\sin x, 0 \leq x \leq \pi / 2$.

Answer: $\frac{3}{2}$. Hint: $\int x \sin x d x=-x \cos x+\int \cos x d x$
2. $\mathbf{F}(x, y, z)=e^{y} \mathbf{i}+\left(x e^{y}+e^{z}\right) \mathbf{j}+y e^{z} \mathbf{k}$,
(a): Show that \mathbf{F} is conservative,
(b): Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the line segment from $(0,2,0)$ to $(4,0,3)$.

Answer: (a) \mathbf{F} is conservative, (b) 2.
3. Evaluate $\int_{C} x^{2} y d x+\ln \sqrt{1+y^{2}} d y$, where C is the triangle from $(0,0)$ to $(2,2)$ to $(0,2)$ to $(0,0)$ with counterclockwise orientation. Answer: $-\frac{4}{3}$.
4. Evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$, where $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+x y \mathbf{j}+z \mathbf{k}$ and S is the part of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=1$ with upward orientation.
Answer: $\frac{\pi}{2}$.
5. Evaluate $\iint_{\partial Q} \mathbf{F} \cdot \mathbf{n} d S$, where $\mathbf{F}=<x^{2}-y^{2} z, x \sin z, 4 y^{2}>, Q$ is bounded by $4 x+2 y-z=4 \quad(z \leq 0)$ and the coordinate planes. Answer: $-\frac{2}{3}$.
6. Evaluate $\iint_{S} \operatorname{curlF} \cdot \mathbf{n} d S$, where $\mathbf{F}(x, y, z)=x^{2} y z \mathbf{i}+y z^{2} \mathbf{j}+z^{3} e^{x y} \mathbf{k}, S$ is the part of the sphere $x^{2}+y^{2}+z^{2}=5$ that lies above the plane $z=1$, and S is oriented upward.
Answer: -4π.
7. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}$ and C is the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$, oriented counterclockwise as viewed above. Answer: $-\frac{1}{2}$.
8. Evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$, where $\mathbf{F}(x, y,, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$ and S is the surface of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=0$ and $z=2$. Answer: 11π.

