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A TIME DOMAIN ALGORITHM FOR BLIND SEPARATION OF

CONVOLUTIVE SOUND MIXTURES AND L1 CONSTRAINED

MINIMIZATION OF CROSS CORRELATIONS∗

JIE LIU† , JACK XIN‡ , YINGYONG QI§ , AND FAN-GANG ZENG¶

Abstract. A time domain blind source separation algorithm of convolutive sound mixtures is
studied based on a compact partial inversion formula in closed form. An l1-constrained minimization
problem is formulated to find demixing filter coefficients for source separation while capturing scaling
invariance and sparseness of solutions. The minimization aims to reduce (lagged) cross correlations
of the mixture signals, which are modeled stochastically. The problem is non-convex, however it
is put in a nonlinear least squares form where the robust and convergent Levenberg-Marquardt
iterative method is applicable to compute local minimizers. Efficiency is achieved in recovering
lower dimensional demixing filter solutions than the physical ones. Computations on recorded and
synthetic mixtures show satisfactory performance, and are compared with other iterative methods.

Key words. Convolutive mixtures, compact partial inversion, l1 constrained decorrelation,
blind source separation.
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1. Introduction

Humans with normal ears are able to pay attention to one speaker while others
are talking at the same time, as typically happens at a cocktail party. This is an
example of our brain’s blind signal processing (BSP) capability. Here blindness refers
to the estimation of sources from received signals without detailed knowledge of the
transmission environment (room shapes, speaker locations, furnitures etc). A simpli-
fied problem is this. Suppose a person is talking in a room while some music is playing
in the background. Two microphones are placed at different locations in the room
for recording. Due to multi-pathing effects of sound wave propagation, each recorded
signal is a convolutive mixture of the speech and the music signals. The two plots on
the left of Fig. 1.1 show the recorded data at sampling rate 16000 Hz, which could be
what a listener picks up if the two microphones are replaced by two ears. What to be
discussed in this paper is how to recover the speech and music signals (the original
source signals in general) by “inverting the received mixtures”. The two plots on the
right are the recovered (separated) speech and music signals obtained by the algo-
rithm discussed later in this paper. The main part of the algorithm is to determine
the demixing filter coefficients, which then convolute with the recorded mixtures to
produce the estimated source signals. We will derive the system of equations satisfied
by the demixing fitler coefficients. The solution of the “source separation” problem
hereafter refers to the demixing filter coefficients.

Suppose signal transmission is modeled by the linear relation x=As, where s∈Rn

is the sources, x is the received data, and A is an invertible n×n transfer matrix.
A standard inversion problem is to find s (the sources), given x and A. A standard
system identification problem is to approximate A, given x and s. The BSP problem
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Fig. 1.1. Left: recorded signals (input). Right: separated speech and music after processing
(output). This is case(1)-1 in Sec. 4.

is to estimate both s and A from x under certain assumptions of s. For example,
if s and x are time dependent and A is time independent, then A can be estimated
if different components of s are orthogonal time series or statistically independent
when s is modeled as a random process [11]. The estimation is done without knowing
s. Here, for simplicity we suppose that the data transmission has no time delay
(direct-pathing only). The resulting BSP problem is called instantaneous.

A general BSP problem is to estimate an inverse system and source signals from
observed data of a nonlinear dynamical system and certain a-priori properties (yet no
access) of source signals or systems (Sec. 1.1 of [11]). The estimated source signals are
usually a modified yet perceptually close version of the exact sources. BSP methods
are widely used in biomedical engineering, medical imaging, communication systems,
exploration seismology, geophysics, econometrics, unsupervised learning, and data
mining [11], to name just a few.

Motivated by a human’s ability to solve the cocktail party problem yet without
knowing how the brain actually does it, blind source separation (BSS) methods aim
to extract the original source signals from their mixtures based on the statistical
independence of the source signals without knowledge of the mixing environment.
The approach has been very successful for instantaneous mixtures [1, 7, 8]. However,
realistic sound signals are unknown weighted sums of the signals and their delays.
Separating such “convolutive” mixtures is a challenging problem, especially in realistic
settings.

Time domain methods do not use Fourier transforms and have certain advantages.
Phase and permutation indeterminacies commonly associated with frequency domain
(Fourier transform based) methods are avoided. However, there are typically more
parameters to estimate because of the nonlocality of convolutive mixtures, resulting
in a high dimensional optimization problem. Also, the iterative solution methods
may suffer from slow convergence, instability, and lack of robustness. Among the
previously studied time domain methods, [29] introduced a feedback architecture and
infomax learning rule (see [14] for recent development), and [21] proposed a feed-
forward architecture and minimization of a logarithmic cost function (decorrelation)
with preprocessing by a frequency domain method. As pointed out recently [10], to
date time domain methods for convolutive mixtures are limited, and may converge
slowly for statistically colored input signals such as speech.
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In this paper, we formulate a time domain BSS method in an optimization frame-
work to compute the demixing filter coefficients based on an exact partial inversion
formula (2.7)–(2.8). We shall consider the case when the number of receivers is equal
to the number N of sources. The computation is for N =2, where generally a fore-
ground signal is to be separated from a background signal. The background signal may
be a sound mixture with broad spectra. Though theoretically our framework is for
any number of sources, we focus on N =2, separating a foreground source from the
background source(s), a common scenario in practice.

The first key idea is that there is a closed form compact partial inversion of the
convolutive mixing (see (2.7)–(2.8) and Thm. 2.1). For example, if x=As, x,s∈Rn,
and A is a nonsingular n×n matrix, a partial inversion is a square matrix B such that
BA is diagonal. The partial inversion can be properly extended when the standard
product As is replaced by a convolutive product A⋆s. In other words, there is a
convolutive variant of the cofactor formula in linear algebra. If N =2, the total
number of demixing coefficients in the partial inversion is the same as that of the
mixing coefficients. Let us denote the partially inverted signals by

vj(t), j =1,2,... ,N,

and the source signals by sj(t), then each vj depends only on sj , and the vj ’s are
independent of each other. We will first obtain vj ’s using the demixing coefficients.
The sj ’s can be obtained by further deconvolving the vj ’s. Both the vj ’s and the
sj ’s are acceptable results for the independent component analysis (ICA) and are in
fact perceptually close, which reflects the non-uniqueness nature of the BSS problem.
The vj ’s require less computation than the sj ’s. The partial inversion approach was
based upon reformulating and developing a decorrelation method in the earlier work
of Weinstein, Feder and Oppenheim [30]. These authors studied a special form of
convolutive mixing and proposed an iterative method.

To impose independence on vj ’s, we consider as in [30] the vanishing cross corre-
lations (with time lags):

E[vi(t)vj(t−n)]=0 ∀n, (1.1)

from which we derive algebraic equations for the demixing coefficients. As this con-
dition is only theoretically meaningful and the number of equations may not be the
same as the number of unknowns in general, we formulate a nonlinear least squares
problem to minimize the square sum of cross correlation coefficients with time lags in
a certain range. Such an objective function Fin is quartic in a high dimensional space
RNMN , with NMN on the order of hundreds, and M a positive integer equal to the
length of mixing linear convolution.

Due to scale invariance of the BSS problem, zero demixing filter coefficients may
be a solution. To remove such a trivial solution, one commonly introduces a nor-
malization condition, by requiring that the lk (k≥1) norm of the demixing filter
coefficients be 1. Our second idea is to choose k =1 (1-norm) because the resulting
demixing coefficients have sparser multi-peak structures, and decay faster than those
using k =2 (or in general k >1). The l1 solutions are in a sense the minimum length
(low dimensional) solutions among those that approximately satisfy Fin =0 (decor-
relation). We shall illustrate this point later with examples. One may also think
of sparse multiple peak structures as a compact (low dimensional) approximation of
multiple reflections [14, 31] along the acoustic paths of sound propagation, as seen in
simulated room acoustic data [29]. The computational advantage of a low dimensional
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approximation is that the length of the demixing filter coefficients in our algorithm
can be an order of magnitude shorter than that of the actual physical demixing filter
coefficients. The latter is proved to exist by our compact partial inversion formula
(2.7)–(2.8). Our experience with the current method is that l1 normalization per-
forms consistently better than l2, even though the improvement may not be perceived
distinctly sometimes.

We shall introduce a new objective function F equal to the sum of the decorrela-
tion function Fin and a penalty function to control the l1 norm of solution so that it
is near a fixed value, say 1. Because of the scale-invariance of the BSS problem, we
make use of the l1 norm as a constraint, different from existing sparse solution prob-
lems [12, 5, 32] where the l1 norm may be directly minimized. Nevertheless, we found
that l1-constraint also leads to “sparse solutions” as compared with those from the
l2-constraint. The l1 norm is known to be a convex relaxation of sparseness measure,
and an efficient quantity for computing sparse solutions [16, 27]; see also the related
total variation norm [26, 9, 22] for feature enhancement and blind deconvolution in
image processing. The l1 norm may also be applicable in the spectral domain for
formant enhancement and speech recognition [24]. The l1 minimization problem has
been extensively studied in the context of compressive sampling and basis pursuit
[12, 5, 32]. Under certain optimal conditions, l1 minimization is equivalent to min-
imizing the sparseness of solutions subject to linear under-determined constraints,
leading to exact and stable signal recovery [5, 6, 13].

The two ideas above, partial inversion and the l1 constraint, allow us to develop
an efficient time domain BSS method. Encouraging results on satisfactory separation
of recorded and synthetic sound mixtures of different kinds are reported.

The objective function F (l1 constrained decorrelation) will be treated as deter-
ministic where expectations are approximated by sufficient data streams. We use
the Levenberg-Marquardt method (LM) to solve this approximately “deterministic”
minimization problem (see (3.2)). LM is a hybrid method of gradient descent and
Newton iteration. Its step size is variable and is controlled by the method, and it
is well known for its robustness and efficiency [18, 19]. The advantage is that the
convergence to a minimizer is guaranteed. This is different from stochastic gradient
descent algorithms [14, 15], where convergence is unknown and depends on source
signals’ probability distribution function, the initial condition and choice of step size
[14]. Another difference is that the stochastic gradient descent method [14, 15] uses
higher order statistics while our method relies on non-stationarity of signals and sec-
ond order statistics. As we shall see, the same initial condition of the form (1,0,...,0) is
fine for all three real room recorded data. Because we seek low dimensional solutions
under l1 normalization, the length of demixing filter coefficients is set at an order
of magnitude smaller than that in the actual physical measurements [14]. Computa-
tions on recorded and synthetic mixtures show satisfactory performance, comparable
to the stochastic descent (infomax) method [15] however at much shorter demixing
filter lengths.

Related speech enhancement or separation methods have been studied in the
literature. One is the microphone array beamforming method based on maximizing
directionality ([2] and references therein), another is auditory scene analysis, which
models various aspects of human perceptual representation and separation of sources,
[3, 4, 25] etc. Earlier work on echo cancellation [28] touches upon decorrelation as
well; see also reference on adaptive noise cancelling in [30]. These early works used
least mean square estimation methods, which may not be effective for the convolutive
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BSS problems.
The paper is organized as follows. In Sec. 2, the compact partial inversion formula

of mixtures and the resulting algebraic system of equations of mixing coefficients
are derived. In Sec. 3, the l1 constrained objective function is introduced and the
minimization method is discussed. In Sec. 4, numerical results are shown and analyzed
to demonstrate the capability of our method to separate speech and music mixtures
in both real room and synthetic environments. Conclusions are in Sec. 5.

2. Compact partial inversion and independence

Consider the convolutive mixing model with N sources and N receivers:

yn(t)=

q
∑

k=1

an1
k s1(t+1−k)+ ···+

q
∑

k=1

anN
k sN (t+1−k) for n=1,...,N, (2.1)

where si’s are the independent source signals, the yi’s are the received mixtures, and
the aij

k ’s are the mixing coefficients, i,j =1,...,N , k =1,...,q. We wish to recover si(t)

from yi(t) without knowing aij
k .

We will derive a compact partial inversion formula for (2.1) and derive a system of
equations for {aij

k } based on the assumption that s1,...,sN are mutually independent.
To make the notation simple so that the derivation can be easily understood, we will
first consider the N =2 case before we discuss the more general N ≥2 case.

2.1. Two sources and two receivers case. Consider the convolutive mixing
model of two independent sources:

y1(t)=

q
∑

k=1

a11
k s1(t+1−k)+

q
∑

k=1

a12
k s2(t+1−k) (2.2)

y2(t)=

q
∑

k=1

a21
k s1(t+1−k)+

q
∑

k=1

a22
k s2(t+1−k), (2.3)

which can be written as
(

y1

y2

)

=

(

a11∗, a12∗
a21∗, a22∗

)(

s1

s2

)

, (2.4)

where ∗ is the convolution operation and aij or si or yi is an infinite sequence (any
finite sequence is extended into an infinite sequence by zero padding). For example, s1

is (··· ,s1(k−1),s1(k),s1(k+1),···). The collection of all the infinite sequences forms
a semigroup with the binary operation ∗ being associative and commutative, namely

(f ∗g)∗h=f ∗(g∗h), f ∗g =g∗f. (2.5)

For the purpose of inversion, we shall consider multiplying a matrix by its adjoint
matrix. To this end, let us define

(

v1

v2

)

=

(

a22∗, −a12∗
−a21∗, a11∗

)(

y1

y2

)

, (2.6)

namely,

v1(t)=

q
∑

k=1

a22
k y1(t+1−k)−

q
∑

k=1

a12
k y2(t+1−k) (2.7)

v2(t)=−

q
∑

k=1

a21
k y1(t+1−k)+

q
∑

k=1

a11
k y2(t+1−k). (2.8)
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This is a convolutional variant of the cofactor formula in linear algebra.
Now plugging (2.4) into (2.6), we obtain

(

v1

v2

)

=

(

a22∗, −a12∗
−a21∗, a11∗

)(

a11∗, a12∗
a21∗, a22∗

)(

s1

s2

)

=

(

a22 ∗a11 ∗−a12 ∗a21∗, a22 ∗a12 ∗−a12 ∗a22∗
−a21 ∗a11 ∗+a11 ∗a21∗,−a21 ∗a12 ∗+a11 ∗a22∗

)(

s1

s2

)

=

(

a11 ∗a22 ∗−a12 ∗a21∗, 0
0, a11 ∗a22 ∗−a12 ∗a21∗

)(

s1

s2

)

. (2.9)

Unfolding the convolutions, we have:

v1(t)=

2q−1
∑

τ=1

(

τ
∑

k=1

a11
k a22

τ+1−k−a12
k a21

τ+1−k

)

s1(t+1−τ), (2.10)

v2(t)=

2q−1
∑

τ=1

(

τ
∑

k=1

a11
k a22

τ+1−k−a12
k a21

τ+1−k

)

s2(t+1−τ). (2.11)

Since vi only depends on si, we conclude that v1 and v2 are independent. In
particular, we have

E(v1(t)v2(t−n))=0 ∀n. (2.12)

Substituting (2.7) and (2.8) into (2.12), we have

q
∑

k,m=1

−a22
k a21

mE(y1(t+1−k)y1(t+1−m−n))

+a12
k a21

mE(y2(t+1−k)y1(t+1−m−n))

+a22
k a11

mE(y1(t+1−k)y2(t+1−m−n))

−a12
k a11

mE(y2(t+1−k)y2(t+1−m−n))=0,

which can be written as

q
∑

k,m=1

−a22
k a21

mC11
k,m,n +a12

k a21
mC21

k,m,n

+a22
k a11

mC12
k,m,n−a12

k a11
mC22

k,m,n =0 (2.13)

for any n, where

Cij
k,m,n =E(yi(t+1−k)yj(t+1−m−n)). (2.14)

Let Cij
n =(Cij

k,m,n)k,m=1,...,q be a q×q matrix. Let aij =(aij
1 ,...,aij

q )T . Then,
(2.13) can be written in vector form:

(

a22;a12
)T

(

−C11
n C12

n

C21
n −C22

n

)(

a21

a11

)

:=uT Cnw =0 (2.15)

for any n. We note that equations (2.7)–(2.8) decouple the mixtures exactly as seen in
(2.10)–(2.11), so that the independence of the sources is passed onto that of (v1,v2).
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This is different from the approximate independence at the output of a feedforward
network (Sec. 10 of [10]) whose filter length and precise relation to the mixing filter
are unknown (even if the mixing filter length is known).

Note that

Cij
k,m,n =Cij

k′,m′,n′ (2.16)

whenever k−m−n=k′−m′−n′. Because of this property, part of the matrices that
we encounter in computation are Toeplitz or Hankel matrices, which can be utilized
to save storage and computation time.

2.2. The more general N sources and N receivers case. Let us define
a N ×N matrix A=(aij), and its determinant by α({akl};·). The adjoint matrix
of A is denoted by B =(bij) where each entry bij is a function of {akl}, denoted by
bij =βij({akl};·). For example, when N =3, α({akl};·)=detA=a11 ·a22 ·a33−a11 ·
a23 ·a32−a21 ·a12 ·a33 +a21 ·a13 ·a32 +a31 ·a12 ·a23−a31 ·a13 ·a22 and β12({akl};·)=
∂detA
∂a21 =a13 ·a32−a12 ·a33. The reason we introduce α({akl};·) and βij({akl};·) is

that later on we will use aij to denote an infinite sequence and then the no-
tation α({akl};∗)=a11 ∗a22 ∗a33−a11 ∗a23 ∗a32−a21 ∗a12 ∗a33 +a21 ∗a13 ∗a32 +a31 ∗
a12 ∗a23−a31 ∗a13 ∗a22 and β12({akl};∗)=a13 ∗a32−a12 ∗a33 will be infinite se-
quences, where ∗ is the convolution.

Now we consider the more general N receivers and N sources case (2.1) which
can be written as











y1

y2

...
yN











=











a11∗ a12∗ ··· a1N∗
a21∗ a22∗ ··· a2N∗

...
...

...
...

aN1∗ aN2∗ ··· aNN∗





















s1

s2

...
sN











:=A











s1

s2

...
sN











(2.17)

where A is the N ×N operator matrix (aij∗). Now we introduce the adjoint matrix B

whose (i,j) entry is the convolution operator

βij({akl};∗)∗, (2.18)

where βij({akl};∗) by itself is an infinite sequence. For example, when N =3,

B=





(a22∗a33−a23∗a32)∗, (a32∗a13−a33∗a12)∗, (a12∗a23−a13∗a22)∗
(a23∗a31−a21∗a33)∗, (a33∗a11−a31∗a13)∗, (a13∗a21−a11∗a23)∗
(a21∗a32−a22∗a31)∗, (a31∗a12−a32∗a11)∗, (a11∗a22−a12∗a21)∗



 . (2.19)

Now define






v1

...
vN






=B







y1

...
yN






. (2.20)

Theorem 2.1. Suppose si and yj (i,j =1,...,N) are related by Equ. (2.17). If
{si : i=1,...,N} are uncorrelated (or independent), then {vi : i=1,...,N} defined by
(2.20) are uncorrelated (or independent).

Proof. Because of (2.5) and because of the arithmetic cancellation in the product
between the matrix and its adjoint matrix, we know the product between the two
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operator matrices B and A is a diagonal operator matrix with each diagonal entry
being the convolution operator α({akl};∗)∗. Plugging (2.17) into (2.20), we obtain







v1

...
vN






=BA







s1

...
sN






=(α({akl};∗)∗)







s1

...
sN






. (2.21)

So the decorrelation or independence between {si : i=1,...,N} is passed to that of
{vi : i=1,...,N}.

Remark 2.1. If the support of akl in (2.17) is q, then the support p of sequences
βij({akl;∗}) (the demixing coefficients) is equal to the length of linear convolution
product of N −1 mixing coefficients, or

p=(N −1)q−N +2.

In particular, when N ≥3, the number of filter coefficients in the partial inversion is
larger than that in mixing.

Denote

βij({akl;∗})={bij
1 ,...,bij

p }. (2.22)

The BSS problem is reduced to finding pN2 number of demixing filter coefficients
bij
n , for which one imposes a proper set of covariance conditions and formulates an

optimization problem, similar to what we have done before. The details are omitted.

Remark 2.2. The above theorem proved the existence of a finite length solution {bij
n :

n=1,...,p;i,j =1,...,N} for the BSS problem. In particular, if we are not blind, and
can measure the impulse response akl which is independent of the sources, then given
any mixture recorded in the same environment (same source and receiver locations)
we immediately obtain the vi’s in the theorem. Each of them contains exactly one
source, and “source separation” is achieved.

In BSS, one relies on independence of the vi’s to write down (theoretically in-
finitely many) equations that aij should satisfy. For example E(f(vi(t))g(vj(t−k)))=
0, ∀ i 6= j, for infinitely many choices of f and g. It seems unknown whether these
equations or a subset of these equations uniquely determine aij .

3. l1 Constrained minimization

Now, we let n vary and solve the decorrelation equations (2.13) or (2.15) to obtain
aij

k . Since we may have more equations than unknowns in general, it is natural to
solve (2.15) (with n running from −N to N) in the least squares sense. To avoid the
trivial solution u=w=0 and fix scaling invariance, we impose the constraint ‖u‖=1
and ‖w‖=1 for some vector norm ‖·‖. To capture peaks in the solution, we use
the l1 norm in a penalty term. The mixing and demixing filter coefficients typically
have multi-peaks due to multiple reflections experienced by the acoustic waves in the
environment. The l1 norm is good at distinguishing peaks. In contrast, l2 norm tends
to spread solutions. Moreover, the l1 norm maintains certain sparseness between
peaks, which is also desired for avoiding spurious oscillations. A numerical example
will be presented later to illustrate this point.
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The objective function to be minimized is

F (u,w) :=
∑

n

∣

∣uT Cnw
∣

∣

2
+σ2(‖u‖2

l1 −1)2 +σ2(‖w‖2
l1 −1)2, (3.1)

where σ >0 is a positive relaxation parameter. So

[u;w]=argmin
∑

n

∣

∣uT Cnw
∣

∣

2
+σ2(‖u‖2

l1 −1)2 +σ2(‖w‖2
l1 −1)2 (3.2)

where the Matlab notation [u;w] defines a vector as a concatenation of two vectors.
The relaxation parameter σ is to be properly chosen so that the minimizing sequence
can evolve from a sparse initial condition. If it is too small, the constraint is too weak
to be effective. If it is too large, the minimizing sequence evolves too slowly. For a
proper choice of σ, the l1 norm will vary in a small neighborhood of one, and [u;w]
evolves effectively to a nonzero limit. In our numerical examples, we take σ =0.002
and have found that once we found this σ after a few tests, it works for all different
mixtures. In principle, σ depends on the size of the optimization problem. However,
we do not know an automated method to find the optimal σ. The good values of σ
are pre-determined by hearing tests. Alternatively, one may minimize the following
Rayleigh quotient with more overheads of computing ratios and their gradients:

[u;w]=argminF (u,w)=argmin
∑

n

(

uT Cnw

‖u‖l1‖w‖l1

)2

. (3.3)

In numerical tests that have been performed, the results are comparable.
Next, we proceed to find the minimizer of F in (3.1) or (3.3). We have writen F

as a sum of the squares of functions so that the Levenberg-Marquardt (LM) method
applies. The LM method minimizes a function of the form

g(x)=
1

2

m
∑

i=1

(fi(x))2,

or a sum of squares of functions of x=(x1,...,xn). If we use steepest descent,
the searching direction is −∇g =−JT f , where f =(f1,...,fm)T and J =(∂fi/∂xj)
is the Jacobian. If we apply the standard Gauss-Newton method, then xk+1 =
xk−(JT J)−1JT f . When m=n, J is a square matrix this is the Newton method for
solving f(x)=0. The LM method is an interpolation between steepest descent and
Gauss-Newton, namely

xk+1 =xk−(JT J +µkI)−1JT f (3.4)

with µk >0. When µk =0, it becomes Gauss-Newton; and when µk is large, it
moves a small step along a direction very close to the steepest descent direc-
tion. The matrix being inverted is always nonsingular, even when JT J is singu-
lar. The LM method has a strategy to choose µk to guarantee the reduction of
g. For more exposition of the LM method, see [18, 19] among others. The web
site http://www.ics.forth.gr/ lourakis/levmar/ provides a public C/C++ code by M.
Lourakis, and a link to the Matlab code by H. B. Nielsen.

Though the l1 norm seems less differentiable, it is convex and can be easily reg-
ularized. The derivatives ∇uj

‖u‖l1 =∇uj
|uj | are approximated by ∇uj

|uj |=
uj

ǫ+|uj |

with a small positive parameter ǫ. This turns out to be sufficient for computation.
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When the aij ’s are computed, the decorrelation of v1 and v2 follow from equation
(2.12) with n=−N,−N +1,...,N . Furthermore, if the aij ’s are close to the exact
aij ’s, then vi only contains information from the exact si alone, for i=1,2 (see (2.10)–
(2.11)). At this point, we have a set of BSS solutions, which are often perceptually
good enough. The source signals si (i=1,2) are recovered from (2.10) and (2.11) by
a FFT-based deconvolution method.

4. Computational results

The computations reported here are for 2 sources and 2 receivers. The data
are either recorded mixtures in an office size room or conference room or synthetic
convolutive mixtures, as listed in Table 4.1. They will be called case (1)-1, (1)-2, (1)-3
and case (2) in the following discussion. The three real room recorded data in case
(1) are from [15].

case # description
(1)-1 A speaker has been recorded with two distance talking microphones

in a normal office room with loud music in the background. The
distance between the speaker, cassette player and the microphones is
about 60cm in a square ordering.

(1)-2 Two speakers have been recorded speaking simultaneously. Speaker
1 says the digits from one to ten in English and speaker 2 counts at
the same time the digits in Spanish. The recording has been done
in a normal office room. The distance between the speakers and the
microphones is about 60cm in a square ordering.

(1)-3 Two speakers have been recorded speaking simultaneously. The
recording was in a conference room (5.5 m by 8 m). The conference
room had some air-conditioning noise. Both speakers were reading a
section from the newspaper for 16 sec. Microphones were placed 120
cm away from the speakers.

(2) Synthetic mixture of two female speeches. The mixing coefficients
aij in (2.2)–(2.3) are given by the empirical formula of [29, (8)], and
renormalized so that

∥

∥[a22;a12]
∥

∥

l1
=1=

∥

∥[a21;a11]
∥

∥

l1
. The exact aij

can be read from Table 4.6-aij . Mixtures and the clean sources are
in Table 4.5.

Table 4.1. Description of real room recorded data from [15] and the synthetic mixture, at
sampling rate 16 kHz.

Table 4.2 plots the three pairs of mixtures of case (1). The associated computation
results are listed in Table 4.3 and Table 4.4. See also Table 4.10 (to be discussed later)
for results from an “economical” version of the algorithm. We have heard both our
separation results and those posted on [15]. Perceptually, they are very close. For
case (1)-1 and (1)-2, the separation results are very good. For case (1)-3, distinct
improvement can be heard.

For the synthetic mixtures in case (2), the mixing coefficients are known, and
hence by our compact partial inversion formula (2.7)–(2.8), we know exactly the
demixing filter coefficients. We compare computed demixing filter coefficients with
the exact values. Computational results of case (2) are listed in Table 4.6. From
the plot of aij ’s, we see that the numerical solution is sparse, which agrees with the
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exact aij . One can also compare the computed si’s in Table 4.6 with the exact si’s
in Table 4.5.

case # Mixture

(1)-2

1 2 3 4 5 6 7 8 9 10 11

x 10
4

−0.5

0

0.5

1 2 3 4 5 6 7 8 9 10 11

x 10
4

−0.2

0

0.2

0.4

0.6

(1)-3

0.5 1 1.5 2 2.5 3

x 10
5

−0.5

0

0.5

1

0.5 1 1.5 2 2.5 3

x 10
5

−0.5

0

0.5

Table 4.2. Plot of the mixture for case (1). See Fig. 1.1 for case (1)-1.

The Cn’s in the objective function are computed from (2.14) with n=−N,...,N ,
while k and m range from 1 to q. We take demixing filter length q =50 for all the
cases. In case (1), q is unknown; in case (2), the exact q is 46. We take N =150, which
means the range of n in (2.13), (2.15), (3.1) or (3.2) is from −150 to 150. So, there
are a total of 301 equations in (2.13) or (2.15) and 4q =200 unknowns. A segment
of yi(t) of length L is used to approximate the expectation. To reduce the statistical
error, in all cases we have used all the available data stream to estimate the Cij

k,m,n in

(2.14). The maximum of Cij
k,m,n from the data are typically on the order of O(10−2).

To avoid loss of significant digits, we multiply Cij
k,m,n by 100 so that the adjusted

maximum of Cij
k,m,n is order 1. The value of σ in (3.1) is fixed at 0.002 for all the

cases.
In all the cases, we take the initial value to be (1,0,...,0) for aii, i=1,2, and

(0,0,...,0) for aij when i 6= j. When the LM method is applied to the objective function
(3.1) that contains the l1 norm, the derivative terms like ∇uj

‖u‖l1 =∇uj
|uj | are

numerically approximated by ∇uj
|uj |=

uj

ǫ+|uj |
with ǫ=10−16.

The LM method is implemented in Matlab [18, 19], with the stopping parameters
for iterations set to be opts=[10−3, 10−7, 10−12, 1000, 10−15]. These numbers have the
following meaning: 10−3 and 10−15 are related to the initial value and lower bound of
µk in LM method (see (3.4)). LM iteration will stop when the l∞ norm of the gradient
is less than 10−7, or when ‖[u;w]m+1− [u;w]m‖l2 ≤10−12(10−12 +‖[u;w]m‖l2), or
when the number of iterations exceeds 1000. The superscript m refers to the m-th
iterate. In all cases above, LM method reduces the gradient of the objective function
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case # calculated si using (2.7)–(2.8) and then (2.10)–(2.11).

(1)-2

1 2 3 4 5 6 7 8 9 10 11

x 10
4

−50

0

50

1 2 3 4 5 6 7 8 9 10 11

x 10
4

−40

−20

0

20

40

(1)-3

0.5 1 1.5 2 2.5 3

x 10
5

−40

−20

0

20

40

0.5 1 1.5 2 2.5 3

x 10
5

−20

0

20

Table 4.3. Plot of the computed source signals s for case (1). See Fig. 1.1 for results of case
(1)-1.

below the preset value 10−7.
The partial derivatives of fn :=uT Cnw with respect to aij

k are as follows. Let

J ij
n,k = ∂fn

∂aij

k

, and J ij =(J ij
n,k) with n=−N,...,N,k =1,...,q. Then

J11
n,k =

q
∑

i=1

a22
i C12

i,k,n−a12
i C22

i,k,n (4.1)

J12
n,k =

q
∑

i=1

a21
i C21

k,i,n−a11
i C22

k,i,n (4.2)

J21
n,k =

q
∑

i=1

a12
i C21

i,k,n−a22
i C11

i,k,n (4.3)

J22
n,k =

q
∑

i=1

a11
i C12

k,i,n−a21
i C11

k,i,n. (4.4)

We have (2.16):

Cij
k,m,n =Cij

k′,m′,n′ (4.5)

whenever k−m−n=k′−m′−n′. So J12 and J22 are Toeplitz matrices while J11

and J21 are Hankel matrices. These matrix structures lead to savings in storage and
computation time.

The q value in our computation is much smaller than the dimension of a typical
room impulse response (on the order of 1000), [14]. In fact, the length of the demixing
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case # aij obtained from solving (3.2), (2.15)

(1)-1

0 10 20 30 40 50
−0.1

−0.05

0

0.05 a11

0 10 20 30 40 50
−0.1

−0.05

0

0.05

0.1 a12

0 10 20 30 40 50
−0.04

−0.02

0

0.02

0.04
a21

0 10 20 30 40 50
−0.05

0

0.05 a22

(1)-2

0 10 20 30 40 50

−0.1

0

0.1 a11

0 10 20 30 40 50
−0.04

−0.02

0

0.02

0.04 a12

0 10 20 30 40 50

−0.05

0

0.05 a21

0 10 20 30 40 50

−0.1

−0.05

0

0.05

0.1
a22

(1)-3

0 10 20 30 40 50

−0.1

−0.05

0

0.05

a11

0 10 20 30 40 50

−0.02

−0.01

0

0.01

a12

0 10 20 30 40 50

−0.04

−0.02

0

0.02

0.04

a21

0 10 20 30 40 50
−0.2

−0.1

0

0.1

a22

Table 4.4. Plot of the computed a
ij for case (1).

filter coefficients for case (1)-3 is 2048 in [15] while ours is 50. Our results on case
(1) shows that a low dimensional solution can separate sound mixtures. A more
systematic study of this phenomenon will be presented in a subsequent paper.

The computation times are affected by the following factors: (I) how much data
are used to estimate the Cij

k,m,n in (2.14); (II) size of q and N ; (III) stopping criteria
for LM or the number of iterations in LM. For the results in Table 4.3, we have used
all the data shown in Table 4.2 to estimate Cij

k,m,n; we have taken q =50 and N =150,
and we have waited for LM to converge with stopping criteria described above. The
CPU times for case (1)-1, (1)-2, (1)-3 and case (2) are 47, 53, 119, and 20 seconds
respectively. The computation is done with Matlab on a Compaq laptop with 1.6G
Hz AMD 64 bit dual core CPU.

However, much less data still yields quite good separation. As demonstrated
later in Table 4.10, where 5 iterations of LM and 12800 samples (or 0.8 second of data
stream at 16 kHz sampling frequency) are sufficient for a quality separation of the
recorded mixtures. To avoid the initial silent period in the recorded data, we use the
data stream from 1.0 sec to 1.8 sec. Moreover, we also take q =50 and N =50, which
means that the number of equations (2N +1=101) is less than the number of un-
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mixture

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.1

−0.05

0

0.05

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.05

0

0.05

exact s

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.2

−0.1

0

0.1

0.2
clean signal

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.1

0

0.1

Table 4.5. Case (2). Mixtures and exact source signals.

aij

0 10 20 30 40 50
−0.2

0

0.2

0.4 Exact
a11

0 10 20 30 40 50

−0.1

0

0.1

0.2 Exact
a12

0 10 20 30 40 50

0

0.1

0.2 Exact
a21

0 10 20 30 40 50

0

0.2

0.4 Exact
a22

s

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.4

−0.2

0

0.2

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.1

0

0.1

0.2

Table 4.6. Case (2) with l1 norm constrained minimization ((3.2)). (top) Computed a
ij and

exact a
ij ; (bottom) computed source signals s.

knowns (4q =200). The LM method (3.4) can handle such a degenerate case because
µk >0 and the matrix to be inverted is nonsingular. To further save computational
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aij

0 10 20 30 40 50
−0.5

0

0.5

1

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0 10 20 30 40 50
−0.5

0

0.5

1

Exact

a11
Exact

a12

Exact

a21
Exact

a22

s

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−2

0

2

Table 4.7. Case (2) with l2 norm constrained minimization (replace ‖·‖l1 by ‖·‖l2 in (3.2)).
(top) Computed a

ij and exact a
ij ; (bottom) computed source signals s.

ρ̄(sex
1 ,sex

2 ) ρ̄(y1,y2) ρ̄(v1,v2) ρ̄(s1,s2) ρ̄(sLee
1 ,sLee

2 )
case (1)-1 N/A 8.31e-1 5.62e-3 1.09e-2 3.51e-2
case (1)-2 N/A 7.75e-1 8.81e-3 1.83e-2 1.12e-2
case (1)-3 N/A 5.46e-1 6.28e-3 3.36e-3 7.93e-3
case (2) 2.69e-3 3.19e-1 1.87e-3 4.51e-3 N/A

Table 4.8. Values of the correlation coefficient ρ̄(·,·). The sex
1 and sex

2 are the original sources.
The sLee

1 and sLee
2 are the results from [15].

case # I1 I2 F
(1)-1 6.47e-4 4.71e-5 3.04e-9
(1)-2 7.70e-4 5.79e-5 3.52e-9
(1)-3 1.58e-3 1.19e-4 1.44e-8

(2) 4.21e-4 3.06e-5 3.24e-9
(2)-Ex 1.23e-3 8.93e-5 7.98e-9

Table 4.9. Values of I1, I2 of independence measure (4.9) and of the objective function F
evaluated at the computed a

ij ’s as well as at the exact a
ij ’s. (2)-EX means evaluating I1, I2 and

F at exact a
ij ’s. The exact a

ij is not the global minimizer of the objective function, though it gives
the best separation perceptually.

time, we directly use the vi(t) obtained from (2.7)–(2.8) as the separation results,
which is perceptually good enough. So, we do not have to go further to find si from
each vi. The results shown in Table 4.10 are plots of those vi’s. We have heard the
results and they are already quite good. The total computation time for Table 4.10
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case # calculated vi using (2.7)–(2.8).

(1)-1

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

−0.2

0

0.2

1 2 3 4 5 6 7 8 9 10 11

x 10
4

−0.1
−0.05

0
0.05

0.1

(1)-2

0 2 4 6 8 10

x 10
4

−0.4

−0.2

0

0.2

0.4

0 2 4 6 8 10

x 10
4

−0.2

0

0.2

(1)-3

0 0.5 1 1.5 2 2.5 3

x 10
5

−0.5

0

0.5

0 0.5 1 1.5 2 2.5 3

x 10
5

−0.4

−0.2

0

0.2

0.4

Table 4.10. Plots of the v for case (1) after 5 LM iterations. A piece of 0.8 sec of the data
stream (starting from 1.0 sec after the initial to avoid initial silence) is used to estimate the demixing
filter coefficients. q =50, N =50.

is 4.7, 4.9, and 4.7 seconds for case (1)-1, (1)-2 and (1)-3 respectively.
As a quantitative measure of separation, we compute the maximal correlation

coefficient over multiple time lags:

ρ̄(a,b)= max
k∈{−K,...,K}

|ρ(a(t),b(t+k))| , (4.6)

where ρ is the correlation coefficient defined by

ρ(a(t),b(t))=
cov(a(t),b(t))

√

cov(a(t),a(t))cov(b(t),b(t))
(4.7)

with

cov(a(t),b(t))=L−1

L
∑

t=1

a(t)b(t)−L−2

L
∑

t=1

a(t)

L
∑

t=1

b(t)
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being the estimation of covariance of a and b when there are L samples. The values
of L for computing ρ equals to the size of the total available data stream, which can
be read from the plots in Table 4.2. The value K in (4.6) is 20 in our calculations.
The ρ̄ is computed for the mixtures, sources (in case 2), and the separated v and s.
For comparison, we also computed ρ̄ for the separated signals of [15]. The results are
listed in Table 4.8 which shows that the ρ̄ values of the mixtures are much larger than
those of the separated signals. Table 4.8 also implies that our method is comparable
with [15]. In fact, perceptually, we also find so. We note that in the last row of
Table 4.8, the vi’s have smaller ρ̄ values than those from the original clean signals.

For case (2), since we know the exact sources we have computed the following
quantities:

ρ̄(v1,s
ex
1 )

ρ̄(v1,sex
2 )

=217.425,
ρ̄(v2,s

ex
1 )

ρ̄(v2,sex
2 )

=0.00511,

ρ̄(s1,s
ex
1 )

ρ̄(s1,sex
2 )

=252.303,
ρ̄(s2,s

ex
1 )

ρ̄(s2,sex
2 )

=0.00732, (4.8)

where the sex
1 and sex

2 are the exact original source signals. The above ratio measures
the relative closeness of vi or si to sex

1 and sex
2 . These ratios indicate that vi and si

are quite close to sex
i and quite “orthogonal” to sex

j for j 6= i.
In Table 4.9, we computed the independence measure

Ip :=

(

N
∑

n=1

|uT Cnw|p

)1/p

, (4.9)

where u=[a22;a12] and w=[a21;a11] (by (2.15)), and p=1,2. We also listed the
values of the associated objective function F in (3.1). The last row of Table 4.9
showed the values of Ip and F evaluated at the exact aij of case (2). We see that the
exact aij is not the global minimizer of F . The aij returned from LM iterations can
give even smaller values of F . On the other hand, the exact aij for synthetic mixtures
always gives the best separation by the ear. This shows that independence as an
objective measure of separation is not the same as the perceptual “ear measure”, it
is rather a reasonable correlate.

Ideally, we hope that the exact {aij} is a global minimizer of F in (3.1) so that we
can “locate” it by measuring the size of F . However, numerical experiments indicated
that the landscape of F is complicated; F may have multiple local minimizers. In
synthetic mixture computation, we observed that the desired demixing filter coeffi-
cients are not global minimizers of F in general, instead they are near minimizers.
Partly this is because given any two clean sources of finite length, we do not expect
their cross correlations with different time lags to be all zero as in (1.1). Hence the
desired (perceptually optimal) demixing coefficients will not render F in (3.1) equal
to zero, even though they can make F small. Algebraically, it is possible that there
are other choices of demixing coefficients making F even smaller. If this happens, the
LM solver searching for a minimizer may not find the desired demixing coefficients.

Related to the above observation, even though we have used a small data set to
estimate the demixing filter coefficients (Table 4.10), we do not have a quantitative
way to determine how the quality of the separation depends on the size of the data
set. This is because a precise quantity to measure the quality of separation is not
yet available. There are approximate objective measures. For example, the last two
rows of Table 4.9 list the values of I1, I2 and F (see (4.9), (3.1)) for the synthetic
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mixture case (case (2) with known solution) where the exact demixing coefficients
produce larger I1, I2 and F , even though the exact demixing coefficients give the best
separation. For the problem in Table 4.10, quality is saturated beyond q =50, while
for q <20, quality is getting poor. Likewise, quality is reduced if sample size is less
than 6000 or 400 milliseconds. Two different segments of the same data do not make
much difference in estimated demixing filters in this case. In general, if the speakers
are moving, different segments of data will give different estimations.

We remark that minimizing the l2 constrained objective function (meaning the
l1 in the last two terms of (3.1) or (3.2) is replaced by l2) tends to give oscillatory
aij ’s which are much less sparse than the ‖·‖l1 constrained aij ’s. This can be seen by
comparing Table 4.7 with Table 4.6. In case (2), the aij ’s computed by l2 constrained
objective function can be very different from their exact values, and they may yield
much smaller values of F , I1, and I2 than those at the exact aij ’s. In some sense, l2
constrained filter coefficients bear quite some resemblance to the frequency domain
solutions [23, 20, 17] in that the support of aij ’s is much longer. In contrast, the
l1 constrained solutions tend to be sparse and have less support, which helps the
demixing of long convolutions in low dimensions.

Finally, we comment on how one may apply the current algorithm to data recorded
in a noisy environment. If noise comes from a point source, then adding an additional
receiver, we see that the derivation in Sec. 2 is still valid. If noise does not come from
a point source or an additional receiver is not available, the source signals are then
noisy, as one may encounter in recording if a machine or environmental noise is not
properly shielded. The working assumption of independence of the source signals is
no longer valid because noise polluted source signals are correlated. A preprocessing
step (such as whitening [14]) is often proposed to help condition the mixtures. The
preprocessing ameliorates this problem to some extent but cannot entirely cure the
problem. The data of case (1)-1 and case (1)-2 are high quality recordings with
minimal noise disturbance, while case(1)-3 is recorded with air-conditioning noise
[15]. The resulting separation of case(1)-3 is not as clean as in case(1)-1 or case(1)-2.
On the positive side, applying BSS method to noisy mixtures improves the hearing
conditions of the source signals, especially if the source signals are more dominant
than noise.

5. Conclusions

We developed a time domain approach to BSS based on an l1 constrained mini-
mization of cross correlations with time lags. The method produces estimates of low
dimensional demixing/mixing filter coefficients that are effective for separating both
room recorded and synthetic mixtures of music and speech. Future work will further
investigate preprocessing and fast algorithms.
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