
COMM. MATH. SCI. c© 2005 International Press

Vol. 3, No. 2, pp. 251–259

AN ORTHOGONAL DISCRETE AUDITORY TRANSFORM∗

JACK XIN† AND YINGYONG QI‡

Abstract. An orthogonal discrete auditory transform (ODAT) from sound signal to spectrum
is constructed by combining the auditory spreading matrix of Schroeder et. al. and the time one
map of a discrete nonlocal Schrödinger equation. Thanks to the dispersive smoothing property of
the Schrödinger evolution, ODAT spectrum is a smoother than that of the discrete Fourier transform
(DFT) consistent with human audition. ODAT and DFT are compared in signal denoising tests with
spectral thresholding method. The signals are noisy speech segments. ODAT outperforms DFT in
signal to noise ratio (SNR) when the noise level is relatively high.
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1. Introduction
Acoustic signal processing can benefit significantly from utilizing properties of

human audition, e.g. perceptual coding in MP3 technology of music compression
[12, 13]. In [15], an invertible discrete auditory transform (DAT) is formulated by the
present authors to map sound signal to auditory spectrum. DAT is more adapted to
the spectral features of the ear than Fourier transform. It incorporates the auditory
spreading functions of Schroeder, Atal and Hall [13] to achieve smoother spectrum
than that of the discrete Fourier transform (DFT), and a better performance in de-
noising under spectral thresholding. However, such a transform has redundancy in
the sense that the image of a discrete vector lies in a higher dimensional space, similar
to tight frames in wavelets [2, 14].

In this paper, such redundancy is removed by constructing an orthogonal (unitary)
matrix with spreading property over frequency bands comparable to the critical bands
in hearing. Critical bands (Table 10.1, p 309, [12]) characterize the bandwidth of the
human auditory filter. The auditory orthogonal matrix is obtained from the time one
map of a spatially discrete nonlocal Schrödinger equation. Let space time complex
function u=u(x,t) be the solution of the Schrödinger equation, the time one map
goes from u(x,0) to u(x,1). The Schrödinger equation conserves the L2 norm or
Euclidean length, implying the orthogonality of the time one map. On the other hand,
the dispersive smoothing nature of the Schrödinger evolution leads to the spreading
property of the time one map. The auditory functions of Schroeder, Atal and Hall
[13] appear as a nonlocal potential in the Schrödinger equation. As a result, a class
of orthogonal discrete auditory transforms (ODAT) are generated. In searching for
ODATs, an alternative method based on the dilation equation of wavelets is also
found, however, such an approach turns out to be too rigid to accomodate auditory
properties, e.g. spectral spreading across critical bands.

The paper is organized as follows. In section 2, the ODAT is derived from the
general DAT [15], and the ODAT construction is presented based on the discrete
Schrödinger equation. A specific ODAT is given by inserting the auditory spreading
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functions in [13]. In section 3, auditory spectra of a two tone signal (with frequen-
cies across a critical band) and of a vowel segment are compared with their DFT
counterparts to illustrate the auditory spectral spreading. Denoising with spectral
thresholding is performed on voiced and unvoiced speech segments. ODAT is found
to increase signal to noise ratio beyond DFT when the noise content is relatively high.
Concluding remarks are made in section 4.

2. ODAT and Schrödinger
Let s=(s0,··· ,sN−1) be a discrete real signal, the discrete Fourier transform

(DFT) is [1]:

ŝk =
N−1∑
n=0

sne
−i(2πnk/N). (2.1)

The general discrete auditory transform (DAT) is [15]:

Sj,m≡
N−1∑
l=0

slKj−l,m, (2.2)

where the double indexed kernel function is:

Kl,m =
N−1∑
n=0

Xm,ne
i(2πln/N); (2.3)

and the matrix Xm,n has square sum equal to one in m:

M−1∑
m=0

|Xm,n|2 =1, ∀n. (2.4)

Here M is on the order of N .
DFT is recovered from DAT by setting j=0, M =N , andXm,n theN×N identity

matrix. In case that Xm,n is a nontrivial orthogonal matrix, let us still set j=0 in
(2.2) to find:

S0,m≡Sm =
N−1∑
l=0

sl

N−1∑
n=0

Xm,ne
−i(2πln/N)

=
N−1∑
n=0

Xm,n ŝn. (2.5)

The mapping from sl to Sm is orthogonal. The problem reduces to finding an orthog-
onal matrix (Xm,n) with auditory features.

Such a matrix acts on complex numbers ŝn (except the modes n=0 and n=N/2,
so called DC and Nyquist modes). Let us consider the time one map of the following
spatially discrete Schrödinger equation:

iun,t =σ1 (un+1−2un +un−1)+σ2

Nh∑
m=1

Vm,num, (2.6)

where σ1 and σ2 are positive real numbers, Nh =N/2−1, (Vm,n) is a symmetric
Nh×Nh matrix to carry certain auditory information of the ear. For simplicity,
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Dirichlet boundary condition is imposed for the evolution of equation (2.6). The
discrete equations (2.6) can be cast in the matrix form:

iUt =(σ1A+σ2B)U, (2.7)

where U =(u1,u2,··· ,uNh
)T , A the tridiagonal matrix (−2 on the diagonal, 1 on the

two off-diagonals), B the real symmetric matrix with entry Vm,n at (m,n). The
time one map of (2.7), denoted by Tw, is simply exp{i(σ1A+σ2B)} which is clearly
orthogonal, TwT

′
w = IdNh

, where the prime denotes the conjugate transpose.
The matrix B is built from auditory spreading functions [13] denoted by

S(b(fm),b(fn)), where fm is the frequency to spread from, fn is the frequency
to spread to, and b is the standard mapping from Hertz (Hz) to Bark scale [7].
The functional form of S(·,·) is given in [13]. Define Vm,n =1/2 ·(S(b(fm),b(fn))+
S(b(fn),b(fm))), so B is the symmetric part of the matrix (S(b(fm),b(fn)). Numeri-
cal results based on this choice of B will be reported in the next section.

The matrix X=(Xm,n) takes the block diagonal form:

X=diag{1,Tw,1,T̂w

∗}, (2.8)

where the tilde denotes the reverse permutation of columns of Tw so that the spreading
occurs symmetrically on the DFT components (ŝl, Nh +2≤ l≤N−1) to preserve the
conjugate symmetry of the spectrum. The matrix X is clearly orthogonal and leaves
invariant the DC and Nyquist modes. The ODAT matrix is the product of X and
DFT matrix.

The continuum version of (2.6) is:

iut =∆xu+V (x)∗u, x∈Rn, n≥1, (2.9)

where ∗ is convolution, V (x) is real and even. The L2 norm of u is conserved in time.
Schrödinger equations analogous to (2.9) have been much studied regarding smoothing
(scattering) properties and derivation from particle dynamics, [5, 6, 8, 10, 11] among
others. When the convolution term is cubically nonlinear in u, the equation is known
as Schrödinger-Hartree [5, 8, 6]. In [8, 10], the smoothing and spreading property is
measured in the weighted norm ‖ψ‖m,s =‖(1+ |x|2)s/2(1−∆)m/2ψ‖2, ∆ the spatial
Laplacian. Solutions at time t 6=0 satisfy the bound:

‖u(t)‖1,−1≤C(‖u(0)‖0,1)(|t|+ |t|−1). (2.10)

We shall see in the next section that the time one Schrödinger map Tw inherits the
smoothing and spreading property of the continuum case.

3. Numerical Tests
The computation is carried out in Matlab, with ODAT parameters (σ1,σ2)=

(0.6,0.04). Discrete signal (frame) length N =256. First consider a two tone signal
consisting of sinusoids of frequencies 3 kHz (kilo-Hertz) and 4.3 kHz with identical
amplitudes. The two frequency values span a critical band. Figure 3.1 compares the
ODAT (dashed) and DFT (solid) log-magnitude spectra. The ODAT spectral peak
regions are lower and wider than DFT’s. Also there is more spreading in ODAT spec-
trum towards higher frequency, consistent with upward masking property of human
ear [18]. This can be explained by the weighted norm estimate (2.10), where large x
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Fig. 3.1. Comparison of ODAT spectrum (solid) and DFT spectrum (dash) of a two tone
signal of frequencies (3,4.3) kHz and identical amplitudes. ODAT’s spectral spreading appears near
the peak areas and towards the higher frequencies. ODAT parameters (σ1,σ2)=(0.6,0.04).

corresponds to large frequency. Figure 3.2 shows ODAT and DFT spectra of a vowel
segment containing multiple harmonics, where spectral smoothing is observed again.

ODAT and DFT were used to denoise speech signals via the thresholding method
in the transformed domain [15]. The aim is to improve the signal-to-noise ratio (SNR)
of noisy speech. The premise of the method is that low level components in the
transformed domain are more likely to be noise than signal plus noise. So thresholding
could improve the overall SNR of the signal. The simple thresholding method serves
to illustrate the difference between ODAT and DFT in signal processing. A vowel and
a consonant speech segments were selected, each segment has 512 data points. Noisy
speech was created by adding Gaussian noise to the selected segments. The level of
noise was set to produce the SNR ranging from -12 decible (dB) to +12 dB with a 3 dB
step size. ODAT and DFT were applied to the noisy speech signals. The magnitude
of transformed components were then compared to a threshold. All components with
magnitude smaller than the threshold were ignored for the reconstruction of the signal.
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Fig. 3.2. Comparison of ODAT spectrum (solid) and DFT spectrum (dash) of a vowel segment.
ODAT parameters (σ1,σ2)=(0.6,0.04).

The threshold was computed as the average of the DFT magnitude spectrum. Signal
was reconstructed by the inverse ODAT and DFT, respectively. The SNRs of the
reconstructed vowel signal is plotted vs. input SNRs in Figure 3.3. The SNRs of the
reconstructed consonant signal is plotted vs. input SNRs in Figure 3.4. We see that
ODAT (solid) improves over DFT (dashdot) in terms of SNR when the noise level is
relatively high, particularly in case of consonants which resemble noise more than the
vowels.

The noise-reduction advantage can be attributed to the spectral spreading prop-
erty of ODAT. In Figure 3.5, FFT and ODAT spectrograms are shown for the speech
utterance “fairy tales should be fun to write” from the TIMIT database. The spectro-
grams illustrate the temporal variation of sound spectra. The ODFT spectrogram is
visibly smoother. The spectrograms are obtained by dividing the sentence into short-
time frames, then performing FFT and ODAT to generate spectra of each frame. The
redundant DAT [15] is quite similar in terms of spectral smoothing property. Redun-



256 AN ORTHOGONAL DISCRETE AUDITORY TRANSFORM

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Input SNR (dB)

O
u

tp
u

t 
S

N
R

 (
d

B
)

solid: ODAT
dashdot: DFT

Denoise by thresholding for a vowel segment

Fig. 3.3. Comparison of ODAT (solid) and DFT (dashdot) denoising by spectral thresholding
for a vowel segment. Spectral spreading property of ODAT helps to increase signal content when
noise level is relatively high, e.g. input SNR below 7 decible (dB).

dancy however renders more modes in the transformed domain, and was observed to
provide more SNR gain in denoising tests. It is interesting to find out how to enhance
the amount of smoothing for ODAT in future work.

It is rewarding to investigate how well a nonlinear nonlocal Schrödinger equation
can model the ear’s nonlinear responses. Ear’s nonlinearities are nonlinear and non-
local in nature, and the physiological models are dispersive, nonlinear, and nonlocal
[9, 4, 3, 16, 17].

4. Concluding Remarks
Orthogonal discrete auditory transforms (ODAT) are introduced based on nonlo-

cal spatially discrete Schrödinger equations. Dispersive smoothing, mass conservation,
and robustness of the Schrödinger equation allows one to inject auditory knowledge in
the transform while preserving orthogonality. Numerical tests on two tone and speech
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Fig. 3.4. Comparison of ODAT (solid) and DFT (dashdot) denoising by spectral thresholding
for a vowel segment. Spectral spreading property of ODAT helps to increase signal content when the
noise level is relatively high, e.g. input SNR below zero decible (dB).

segments demonstrate the spectral spreading property of ODAT and advantage in de-
noising. Future work will explore efficient ways to enhance spectral spreading for
ODATs and more complex signal processing applications.
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Fig. 3.5. The FFT (top) and ODAT (bottom) spectrograms of the speech utterance “fairy tales
should be fun to write”.
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