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Abstract

We study a time domain decorrelation method of source signal separation from convo-

lutive sound mixtures based on an infinite impulse response (IIR) model. The IIR model

uses fewer parameters to capture the physical mixing process and is useful for finding

low dimensional separating solutions. We present inversion formulas to decorrelate the

mixture signals and derive filter equations involving second order time lagged statistics of

mixtures. We then formulate an l1 constrained minimization problem and solve it by an it-

erative method. Numerical experiments on recorded sound mixtures show that our method

is capable of sound separation in low dimensional parameter spaces with good perceptual

quality and low correlation coefficient comparable to the known infomax method.
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1. Introduction

Blind source separation(BSS) methods aim to extract the original source signals from their
mixtures based on the statistical independence of the source signals without knowledge of the
mixing environment, see [3, 7, 10]. Realistic sound signals are often mixed through a media
channel, so the received sound mixtures are linear convolutions of the unknown sources and
the channel transmission functions. In other words, the observed signals are unknown weighted
sums of the signals and their delays. The length of delays or convolution is physically on the
order of thousands or more, and results in a complex high dimensional optimization problem.
Separating convolutive mixtures is a challenging problem, especially in realistic settings [5,6,9,
11,13].

Let us consider the mixing of two sources, with one source representing the foreground and
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the other the background source with possibly diffuse spectra. A standard mixing model is:

y1(t) =
Lm∑

k=1

a11
k s1(t + 1− k) +

Lm∑

k=1

a12
k s2(t + 1− k), (1.1)

y2(t) =
Lm∑

k=1

a21
k s1(t + 1− k) +

Lm∑

k=1

a22
k s2(t + 1− k), (1.2)

where si(t)’s (i = 1, 2) are the two source signals, yi(t)’s are the received mixtures, and the
mixing length Lm is large enough to approximate the physical mixing process [5,20]. The si(t)’s
are zero if t < 0. If Lm is finite, the summation contains finitely many terms in (1.1)–(1.2),
and the model is called a finite impulse response (FIR) model. The BSS problem is to recover
the sources and filter coefficients aij

k ’s from yi(t)’s, assuming the statistical independence of
the source signals si(t)’s at t > 0. Statistical independence approach is similar in spirit to
feature based filtering and decomposition in image analysis [4, 17, 18], and is applicable to
image separation as well [6]. Convolutive mixtures occur naturally for sounds.

As observed in [14, 20] and verified by direct calculation, the mixtures y1 and y2 can be
orthogonalized (decorrelated) by an explicit transform. Define w1 and w2 as:

w1(t) =
Lm∑

k=1

a22
k y1(t + 1− k)−

Lm∑

k=1

a12
k y2(t + 1− k), (1.3)

w2(t) =
Lm∑

k=1

−a21
k y1(t + 1− k) +

Lm∑

k=1

a11
k y2(t + 1− k), (1.4)

then w1(t) and w2(t) are independent of each other and contain only the information of in-
dependent sources s1 and s2 respectively. The proof of the independence of w1 and w2 will
be a special case of what we will present in the next section (setting B1(z) = 1 = B2(z) in
(2.4)–(2.5)). The proof also implies that if si’s are uncorrelated (E[si(t) sj(t − n)] = 0, i 6= j,
for any n), then the wi’s in (1.3)–(1.4) are uncorrelated as well.

In [14], a system of algebraic equations of aij
k ’s follows from the uncorrelation of wi’s, and

an optimization problem is formulated to compute aij
k ’s. However, the objective function is

quartically nonlinear and the support of the aij
k in k may be very large, rendering computation

expensive. To actually approach the physical impulse response, Lm can be as large as O(103) or
more. Let us denote this physical limit by Lp. On the other hand, numerical experiments [14]
indicate that there are lower dimensional solutions {aij

k , k = 1, 2, ..., Lm}, Lm ¿ Lp, that suffice
for a rather good separation. For example, in computing separation for three room recordings,
Lm = 50 is found to be effective [14]. Low dimensional separating solutions of similar dimensions
are also reported in [9] for an infomax method.

In [14], l1 norm is employed as a constraint to select solutions with sparse structures as a way
towards finding stable and low dimensional solutions. The sparsity from minimizing l1 norm
has been extensively studied recently in the context of compressive sensing and basis pursuits
(see [2, 8, 19, 21] and references therein). Use of l1 norm as a constraint is due to the scale
invariance of BSS problem and the need to minimize correlation (or independence). Resulting
sparseness appears new. In this paper, we study low dimensional BSS solutions by recasting
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(1.1)–(1.2) into the form:

q∑

k=1

b1
k y1(t + 1− k) =

p∑

k=1

a11
k s1(t + 1− k) +

p∑

k=1

a12
k s2(t + 1− k), (1.5)

q∑

k=1

b2
k y2(t + 1− k) =

p∑

k=1

a21
k s1(t + 1− k) +

p∑

k=1

a22
k s2(t + 1− k), (1.6)

where bi (i = 1, 2) model the resonance frequencies of the mixing environment, or the poles
of a rational filter. One can formally recover (1.1)–(1.2) with Lm = ∞ by solving (1.5)–(1.6)
for yi(t) (i = 1, 2) and expanding solutions into infinite series. Hence (1.5)-(1.6) is an infinite
impulse response (IIR) model of mixing. The potential advantage is that IIR model is more
compact in approximating the physical mixing process and may be effective at a smaller value
of q+p than a typical length of an FIR filter, thereby offering a natural low dimensional setting
for computation. A study of separating complex synthetic mixture of independent identically
distributed quadrature-amplitude-modulated signals using IIR model and infomax method is
in [1] where q = 3 and p = 2.

The rest of the paper is organized as follows. In section 2, inversion formulas of IIR models
are shown to map mixture signals to independent (decorrelated) outputs. In section 3, demix-
ing filter equations are derived from the inversion formulas. In section 4, an l1 constrained
minimization problem is formulated for solving the filter equations along with a Levenberg-
Marquardt iterative method for computing a minimizing sequence. In section 5, experimental
results are shown for separating synthetic and recorded mixtures in IIR model with low dimen-
sional parameter spaces. Concluding remarks will be presented in section 6.

2. Inversion and Decorrelation

Let us first derive the IIR model (1.5)-(1.6) from the infinite dimensional (Lm = ∞) version
of (1.1)-(1.2). Denoting aij = (aij

1 , aij
2 , ...)>, yi = (yi(1), yi(2), ...)> and si = (si(1), si(2), ...)>,

we write (1.1)–(1.2) as
(

y1

y2

)
=

(
a11 ∗ s1 + a12 ∗ s2

a21 ∗ s1 + a22 ∗ s2

)
(2.1)

:=
(

a11∗, a12∗
a21∗, a22∗

)(
s1

s2

)
, (2.2)

where ∗ is linear convolution. For example,

(a11 ∗ s1)(t) =
t∑

k=1

a11
k s1(t + 1− k).

To facilitate our later discussion, we adopt the matrix notation in (2.2) which is equivalent to
(2.1).

Let the formal z−transform be:

Aij(z) =
∞∑

k=1

aij
k z1−k (2.3)
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with i, j equal to 1, 2. Now assume that Aij(z) are modeled by rational functions of z:

A11(z) =
C22(z)
B1(z)

, A12(z) =
−C12(z)
B1(z)

, (2.4)

A21(z) =
−C21(z)
B2(z)

, A22(z) =
C11(z)
B2(z)

, (2.5)

where

Cij(z) =
q∑

k=1

cij
k z1−k, and Bi(z) =

p∑

k=1

bi
kz1−k. (2.6)

An infinite sequence {aij
k , k = 1, 2, ..., } can be represented by rational functions with finite q

and p. This allows the description of the infinite long {aij
k , k = 1, 2, ...,∞} filters by the short

{cij
k , k = 1, ..., q} and {bi

k, k = 1, ..., p} filters. Taking z-transform on both sides of (2.1), (2.1)
or (2.2) becomes

(
Y1(z)
Y2(z)

)
=

(
C22(z)
B1(z) , −C12(z)

B1(z)
−C21(z)

B2(z) , C11(z)
B2(z)

) (
S1(z)
S2(z)

)

Left multiplying the matrix diag(B1(z), B2(z)) on the above equation and going back to the
time domain, we see that (2.2) is put in the form

(
b1∗, 0

0, b2∗
) (

y1

y2

)
=

(
c22∗, −c12∗

−c21∗, c11∗
)(

s1

s2

)
(2.7)

where bi = (bi
1, ..., b

i
p)> and cij = (cij

1 , ..., cij
q )> are vectors of finite dimensions. We have derived

the equivalent and more compact IIR model from the infinite dimensional version of the original
mixing model (1.1)-(1.2).

Now we show that the orthogonalization of y1 and y2 holds for the IIR model. Define
(

v1

v2

)
=

(
c11∗, c12∗
c21∗, c22∗

)(
b1∗, 0
0, b2∗

)(
y1

y2

)
(2.8)

=
(

c11 ∗ b1∗, c12 ∗ b2∗
c21 ∗ b1∗, c22 ∗ b2∗

)(
y1

y2

)
(2.9)

:=
(

d11∗, d12∗
d21∗, d22∗

)(
y1

y2

)
. (2.10)

In the last step, we have introduced

dij = cij ∗ bj , namely dij
k =

∑
m

cij
m bj

k+1−m. (2.11)

where we have zero padded cij
k and bi

k when necessary. Now, plugging (2.7) into (2.8), and
using the fact that cij ∗ cmn = cmn ∗ cij , we obtain

(
v1

v2

)
=

(
c11∗, c12∗
c21∗, c22∗

)(
c22∗, −c12∗

−c21∗, c11∗
)(

s1

s2

)

=
(

c11 ∗ c22 ∗ −c12 ∗ c21∗, 0
0, c11 ∗ c22 ∗ −c12 ∗ c21∗

)(
s1

s2

)
. (2.12)

It follows that if s1 and s2 are independent (or uncorrelated), so are v1 and v2. We summarize
the above results in:
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Theorem 2.1 (independence/uncorrelation) Given the received signals yi’s in (1.1)–(1.2),
if source signals si’s are independent (or uncorrelated), then: (1) the vi’s in (2.10) are inde-
pendent (or uncorrelated); (2) the wi’s in (1.3)-(1.4) are independent (or uncorrelated).

Part (2) is a special case of part (1) with Bi(z) = 1 in (2.4)–(2.5) and the same steps leading
to (2.10), where dii = aii and dij = −aij with i, j = 1, 2 and i 6= j.

Corollary 1.1 (dimensional reduction) Consider (1.1)–(1.2) where the physical support of
aij = {aij

k , k = 1, 2, ...}, i, j = 1, 2, may be either large (thousands) or infinite in k. Suppose
that the z-transforms of aij’s (2.3) are in the form of rational functions (2.4)–(2.6). Then for
source separation, it suffices to find dij = cij ∗ bj in (2.10)–(2.11), whose support may be much
shorter than that of the aij’s.

3. Filter Equations

Let us derive equations for the filter coefficients {cij , bm; i, j, m = 1, 2}. By Theorem 2.1,
we have

E(v1(t)v2(t− n)) = 0, ∀n. (3.1)

Now, we write (2.10) more explicitly as

v1(t) =
p+q−1∑

k=1

d11
k y1(t + 1− k) +

p+q−1∑

k=1

d12
k y2(t + 1− k) (3.2)

v2(t) =
p+q−1∑

k=1

d21
k y1(t + 1− k) +

p+q−1∑

k=1

d22
k y2(t + 1− k) (3.3)

where p is the length of the denominator filter coefficients {bi
k, k = 1, ..., p} and q is the length

of the numerator filter coefficients {cij
k , k = 1, ..., q} in (2.4)–(2.5). Substituting (3.2) and (3.3)

into (3.1), we have

p+q−1∑

k,m=1

d11
k d21

mE

(
y1(t+1−k)y1(t+1−m−n)

)
+ d12

k d21
mE

(
y2(t+1−k)y1(t+1−m−n)

)

+d11
k d22

mE

(
y1(t+1−k)y2(t+1−m−n)

)
+ d12

k d22
mE

(
y2(t+1−k)y2(t+1−m−n)

)
= 0,

which can be written as

p+q−1∑

k,m=1

d11
k d21

mL11
k,m,n + d12

k d21
mL21

k,m,n + d11
k d22

mL12
k,m,n + d12

k d22
mL22

k,m,n = 0 (3.4)

for any n, where

Lij
k,m,n = E

(
yi(t + 1− k)yj(t + 1−m− n)

)
. (3.5)

If we introduce the (p + q − 1)× (p + q − 1) matrices Lij
n = (Lij

k,m,n), (3.4) can be rewritten as

(
d11; d12

)(
L11

n , L12
n

L21
n , L22

n

)(
d21

d22

)
= 0 (3.6)
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for any n, where we assume dij are column vectors and (·; ·) means the concatenation of two
column vectors. We let n vary from −N to N with N large enough so that there are enough
equations to solve for {cij

k } and {bm
k }. Note that (3.6) indicates that

(d11; d12) = (c11 ∗ b1; c12 ∗ b2) and (d21; d22) = (c21 ∗ b1; c22 ∗ b2)

are determined up to a constant. This fact can also be directly read off from (2.10). In our
computation, we fix this ambiguity by normalizing

b1
1 = 1 = b2

1 (3.7)

and also requiring
‖(c11; c12)‖1 = 1 and ‖(c21; c22)‖1 = 1 (3.8)

where ‖ · ‖1 is the `1 norm of a vector. Equations (3.4) are in fact equations for {cij
k } and {bm

k }
in view of (2.11). We may solve for {cij

k } and {bm
k }’s from (3.4) under the constraints (3.7) and

(3.8). The {aij
k } in (1.1)–(1.2) are recovered from (2.4) and (2.5).

To summarize, we shall find {cij
k } and {bi

k} from (3.6) with n varying from −N to N , where
{dij

k } are expressed in terms of {cij
k } and {bm

k } in (2.11). Moreover, we require {cij
k } and {bi

k}
to satisfy the constraint (3.7)–(3.8).

Once we have {cij
k } and {bm

k }, we may calculate w1 and w2 from (1.3)–(1.4) with {aij
k }

obtained from (2.4)–(2.5). Or we may calculate v1 and v2 from (2.9). Either way, we obtain
signals that contain information of only one of the sources. For hearing purpose, w1 and w2

or v1 and v2 are good enough since they are a convolution of s1 or s2 alone. If s1 and s2 are
desired, they can be recovered with a FFT-based deconvolution from w1, w2 or v1, v2.

4. Algorithm

Instead of directly solving (3.6) subject to constraint (3.7)–(3.8), we minimize a relaxed
unconstrained cost function

{cij , b̃m; i, j, m = 1, 2}

=argmin
N∑

n=−N

|fn|2 + σ2(‖(c11; c12)‖21 − 1)2 + σ2(‖(c21; c22)‖21 − 1)2 (4.1)

where

bm = (1; b̃m), fn =
(
d11; d12

) (
L11

n , L12
n

L21
n , L22

n

)(
d21

d22

)
,

dij and cij , bi are related by (2.11). The constraints are handled by the last two penalty terms,
and l1-norm is chosen to improve sparsity of solutions. The advantage of l1 norm over l2 norm
as relaxed constaints is studied in more detail in [14].

The objective function in (4.1) is expressed as a sum of the squares so that the Levenberg-
Marquardt (LM) method applies to search for a minimizer. The LM method minimizes a
function of the form:

g(x) =
1
2

m∑

i=1

(fi(x))2,
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or a sum of squares of functions of x = (x1, ..., xn). If we use steepest descent, the searching
direction is −∇g = −J>f where f = (f1, ..., fm)>, and J = (∂fi/∂xj) is the Jacobian. If we
apply the standard Gauss-Newton method, then

xk+1 = xk − (J>J)−1J>f.

When m = n, J is a square matrix, this is the Newton method for solving f(x) = 0. The LM
method is an interpolation between steepest descent and Gauss-Newton, namely

xk+1 = xk − (J>J + µkI)−1J>f (4.2)

with µk > 0. When µk = 0, it becomes Gauss-Newton; and when µk is large, it moves a small
step along a direction very close to the steepest descent direction. The matrix being inverted is
always nonsingular, even when J>J is singular. The LM method has a strategy to choose µk to
guarantee the reduction of g. For more exposition of the LM method, see [15,16] among others.
The web site http://www.ics.forth.gr/~lourakis/levmar/ provides a public C/C++ code
by M. Lourakis, and a link to the Matlab code by H. B. Nielsen.

5. Computational Results

The computations reported here are for 2 sources and 2 receivers. The data are either
synthetic convolutive mixtures or recorded mixtures in an office size room or conference room,
as listed in Table 5.1. They will be called case (1) and case (2)-1,(2)-2,(2)-3 in the following
discussion. All the three real room recorded data in case (2) are public data of Salk Institute [12].

Figure 5.2 and Table 5.2 plot the pairs of mixtures of case (1) and (2) respectively. The
associated computation results are listed in Figure 5.3, Figure 5.4, Table 5.3 and Table 5.4.

The Ln’s in the objective function are computed from (3.5) with n = −N, ..., N , while k

and m range from 1 to p + q − 1. For case (1), we take p = 9, q = 2 and N = 30. For the
three examples in case (2), we take p = 20, q = 31 and N = 120. There are a total of 2N + 1
equations in (3.4) or (3.6) with 4q + 2(p− 1) unknowns.

A segment of yi(t) of length L is used to approximate the expectation. To reduce the
statistical error, we have used all the available data stream to estimate the Lij

k,m,n in (3.5) in
all the above cases. The maximum of Lij

k,m,n from data are typically on the order of O(10−2).
To avoid loss of significant digits, we multiply Lij

k,m,n by 100 so that the adjusted maximum of
Lij

k,m,n is order 1. The value of σ in (4.1) is fixed at 0.002 for all the cases. If σ is too small,
the constraint is too weak to be effective. If σ is too large, the minimizing sequence evolves
too slowly. Once we found the above σ after a few tests, it works for all different mixtures. In
principle, σ depends on the size of the optimization problem.

In all the cases, we take the initial value to be (1, 0, ..., 0) for cii and bi, i = 1, 2, and
(0, 0, ..., 0) for cij when i 6= j. The bi

1 is fixed to be 1. When the LM method is applied to the
objective function (4.1) that contains l1 norm, the derivative terms such as

∇cj‖c‖l1 = ∇cj |cj |

are numerically approximated by
∇cj |cj | = cj

ε + |cj |
with ε = 10−16.



378 J. LIU, J. XIN AND Y. QI

The LM method is implemented in Matlab [15, 16], with the stopping parameters for it-
erations set to be opts=[10−3, 10−7, 10−12, 1000, 10−15]. These numbers have the following
meaning: 10−3 and 10−15 are related to the initial value and lower bound of µk in LM method
(see (4.2)). LM iteration will stop when the l∞ norm of the gradient is less than 10−7, or when

‖{cij , bm}k+1 − {cij , bm}k‖l2 ≤ 10−12

(
10−12 + ‖{cij , bm}k‖l2

)
,

or when the number of iterations exceeds 1000. The superscript k refers to the k-th iterate.
In all cases above, LM method reduces the gradient of the objective function below the preset
value 10−7.

The computation time depends on the following factors: (I) how much data are used to
estimate the Lij

k,m,n in (3.5); (II) size of p, q and N ; (III) stopping criteria for LM or the
number of iterations in LM. The LM iterations all converge with the stopping criteria described
above. The CPU time for the three examples in case (2) are 40, 44, 102 seconds respectively.
The computation is done with Matlab on a Compaq laptop with 1.6G Hz AMD 64 bit dual
core CPU (in single thread mode).

Results of case (1) show that using the IIR model, we can greatly reduce the number of
unknowns we need to solve for. Figure 5.1 shows the impulse response aij ’s ((1.1)–(1.2)) that
are used to generate the synthetic mixtures. The support of each aij is about 100. If we
follow [14] and use (1.3)–(1.4) as the demixing equations, the number of unknowns we need
to solve for is around 100×4=400. However, using the IIR model (2.4)–(2.5), we can reduce

0 50 100 150 200
−0.5

0

0.5

1
a11

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4
a12

0 50 100 150 200
−0.5

0

0.5
a21

0 50 100 150 200
−1

0

1
a22

Fig. 5.1. Synthetic impulse response for case (1) which is the aij
k in (1.1)–(1.2).
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0

0.1

0.2
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4

−0.2

0

0.2

Fig. 5.2. Case (1): synthetic convolutive mixtures.
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the total number of unknowns that we need to solve for to about 10×4=40. In this synthetic
example, the support of cij in (2.4)–(2.5) is 1 and

(c11, c12, c21, c22) = (0.617, 0.383, 0.333, 0.667).

The exact bi
k’s are plotted in Figure 5.4 together with their approximations that we have found

numerically. It is clear that we can recover the bi
k’s rather accurately. So are the cij ’s. From

the two plots in Figure 5.3, we can clearly see the separation of the two sources.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.05

0

0.05

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.05

0

0.05

Fig. 5.3. Plots of the vi (i = 1, 2) for case (1).

0 2 4 6 8 10
−1

−0.5

0

0.5

1
b1
exact

0 2 4 6 8 10
−2

−1

0

1

2
b2
exact

Fig. 5.4. Numerical results for case (1): bi
k in (2.4)–(2.5).

For the three examples of realistic recorded mixtures in case (2), our separation results and
those posted on [12] are perceptually quite close. For case (2)-1 and case (2)-2, the separation
effect is clear. For case (2)-3, distinct improvement can be heard.

Ideally, we hope that the perceptually optimal {cij , bm} is a global minimizer of the objective
function (call it F ) in (4.1) so that we can “locate” it by minimizing F . However, numerical
experiments indicated that the landscape of F is complicated, and F may have multiple local
minimizers. A minimizer may not always sound better than a near minimizer. Partly this is
because given any two clean sources of finite length, we do not expect their cross correlations
with different time lags to be all zero as in (3.1). Hence the desired (perceptually optimal)
{cij , bm} will not render the objective function in (4.1) equal to zero, even though they make
it small. Algebraically, it is possible that there are other choices of {cij , bm} making F even
smaller. If this happens, the LM solver searching for a minimizer may not find the optimal
{cij , bm}, though it always helps to separate the mixtures.

As a quantitative measure of separation (decorrelation), we compute the maximal correlation
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Table 5.1: Description of room recorded data from [12], at sampling rate 16 kHz.

case # description

(2)-1 A speaker has been recorded with two distance talking microphones in

a normal office room with loud music in the background. The distance

between the speaker, cassette player and the microphones is about 60cm

in a square ordering.

(2)-2 Two Speakers have been recorded speaking simultaneously. Speaker 1 says

the digits from one to ten in English and speaker 2 counts at the same

time the digits in Spanish. The recording has been done in a normal office

room. The distance between the speakers and the microphones is about

60cm in a square ordering.

(2)-3 Two Speakers have been recorded speaking simultaneously. This time the

recording was in a conference room (5.5m by 8m). The conference room

had some air-conditioning noise. Both speakers are reading a section from

the newspaper for 16sec. The mics were placed 120 cm away from the

speakers.

Table 5.2: Plot of the mixture signals for cases (2).

case # Mixture

(2)-1

1 2 3 4 5 6 7 8 9 10 11

x 10
4

−1

−0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11

x 10
4

−0.5

0

0.5

(2)-2

1 2 3 4 5 6 7 8 9 10 11

x 10
4

−0.5

0

0.5

1 2 3 4 5 6 7 8 9 10 11

x 10
4

−0.2

0

0.2

0.4

0.6

(2)-3

0.5 1 1.5 2 2.5 3

x 10
5

−0.5

0

0.5

1

0.5 1 1.5 2 2.5 3

x 10
5

−0.5

0

0.5
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Table 5.3: Plot of the computed output signals for cases (2).

case # calculated si using (2.12) once vi is obtained from (2.9)

(2)-1

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

−20

0

20

s

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

−10

−5

0

5

10

(2)-2

0 2 4 6 8 10

x 10
4

−20

−10

0

10

20

s

0 2 4 6 8 10

x 10
4

−10

−5

0

5

10

(2)-3

0 0.5 1 1.5 2 2.5 3

x 10
5

−40

−20

0

20

40

s

0 0.5 1 1.5 2 2.5 3

x 10
5

−20

−10

0

10

20

coefficient over multiple time lags:

ρ̄(a, b) = max
k∈{−K,...,K}

|ρ(a(t), b(t + k))| (5.1)

where ρ is the correlation coefficient defined by

ρ(a(t), b(t)) =
cov(a(t), b(t))√

cov(a(t), a(t)) cov(b(t), b(t))
(5.2)

with

cov(a(t), b(t)) = L−1
L∑

t=1

a(t)b(t)− L−2
L∑

t=1

a(t)
L∑

t=1

b(t)

being the estimation of covariance of a and b when there are L samples. The values of L for
computing ρ equals to the size of the total available data stream, which can be read from the
plots in Table 5.2. The value K in (5.1) is 20 in our calculations. The ρ̄ is computed for the
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Table 5.4: Plots of the computed bi and cij for cases (2), and absolute values of the roots of Bi(z) = 0,

i = 1, 2.

case # bi and cij obtained from solving (4.1)

(2)-1

0 10 20

0

0.5

1
b1

0 10 20

0

0.5

1
b2

0 10 20
0.7

0.75

0.8

0.85

0.9

abs of b1′s roots

0 10 20
0.7

0.8

0.9

1
abs of b2′s roots

0 10 20 30

−0.05

0

0.05 c11

0 10 20 30
−0.1

−0.05

0

0.05

0.1

c12

0 10 20 30
−0.04

−0.02

0

0.02

0.04 c21

0 10 20 30
−0.1

−0.05

0

0.05

c22

(2)-2

0 10 20

0

0.5

1

0 10 20

0

0.5

1

0 10 20
0.5

0.6

0.7

0.8

0.9

abs of b1′s roots

0 10 20
0

0.5

1

abs of b2′s roots

0 10 20 30

−0.1

−0.05

0

0.05

0.1

0 10 20 30
−0.06

−0.04

−0.02

0

0.02

0.04

0 10 20 30

−0.05

0

0.05

0 10 20 30

−0.1

−0.05

0

0.05

0.1

b1 b2

c11

c12

c21 c22

(2)-3

0 10 20

0

0.5

1
b1

0 10 20

0

0.5

1
b2

0 10 20
0

0.5

1

abs of b1′s roots

0 10 20
0.7

0.8

0.9

1
abs of b2′s roots

0 10 20 30

−0.1

0

0.1 c11

0 10 20 30
−0.03

−0.02

−0.01

0

0.01

c12

0 10 20 30
−0.04

−0.02

0

0.02

c21

0 10 20 30
−0.1

−0.05

0

0.05

c22

mixtures, and the separated v and s. For comparison, we also computed ρ̄ from the separated
signals of [12]. The results are listed in Table 5.5 which shows that the ρ̄ values of the mixtures
are much larger than those of the separated signals. Table 5.5 also implies that our method is
comparable to [12]. Perceptually, we find so as well. FIR mixing model is used in [12] however,
and the number of unknown filter coefficients can be as large as thousands.

Finally, much less data may still yield quite good separation. In Table 5.6, thirty LM
iterations and 12800 samples (or 0.8 second of data stream at 16 kHz sampling frequency) are

Table 5.5: Comparison of the correlation coefficients ρ̄(·, ·). The s1
Lee and s2

Lee are computed from the

results of [12].

ρ̄(y1, y2) ρ̄(v1, v2) ρ̄(s1, s2) ρ̄(s1
Lee, s

2
Lee)

case (2)-1 8.31e-1 1.24e-2 1.39e-2 3.51e-2

case (2)-2 7.75e-1 7.87e-3 2.06e-2 1.12e-2

case (2)-3 5.46e-1 4.25e-3 8.78e-3 7.93e-3
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Table 5.6: Plots of the vi (i = 1, 2) for cases (2) after 30 LM iterations. A piece of 0.8 sec of the data

stream (starting from 1.0 second after the initial time to skip the initial silence) is used to estimate the

demixing filter coefficients, with p = 20, q = 31, N = 40.

case # calculated vi using (3.2)–(3.3).

(2)-1

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

−0.1

0

0.1

v

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

−0.1

−0.05

0

0.05

0.1

(2)-2

0 2 4 6 8 10

x 10
4

−0.1

0

0.1

v

0 2 4 6 8 10

x 10
4

−0.1

0

0.1

0.2

(2)-3

0 0.5 1 1.5 2 2.5 3

x 10
5

−0.2

0

0.2

v

0 0.5 1 1.5 2 2.5 3

x 10
5

−0.2

0

0.2

sufficient for a quality separation of the recorded mixtures. To avoid the initial silent period
in the recorded data, we use the data stream from 1.0 sec to 1.8 sec. Moreover, we also take
p = 20, q = 31 and N = 40, so the number of equations (2N + 1 = 81) is less than the number
of unknowns (4q + 2(p − 1) = 162). The LM method (4.2) can handle such a degenerate case
because µk > 0 and the matrix to be inverted is nonsingular. To further save the computation
time, we directly use vi(t) obtained from (2.9) as the separation results, which is perceptually
good enough. We do not go further to find si from each vi. The results in Table 5.6 are plots
of those vi’s, which are perceptually reasonable. The total computation time for Table 5.6 is
4.5, 5.3, and 4.9 seconds for case (2)-1, case (2)-2 and case (2)-3 respectively. For case (2)-1,
convergence occurs under 30 iterations.
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6. Conclusions

We developed a time domain decorrelation algorithm of convolutive mixtures based on
an infinite impulse response model. We formulated an l1 constrained minimization of cross
correlations with time lags for solving the demixing filter equations. The method produces
estimates of low dimensional demixing/mixing filter coefficients that are effective for separating
room recorded mixtures of music and speech. Future work will investigate related stochastic
learning algorithms to achieve fast and low complexity approximations of the filter equations
with less demand on data input.
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