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Abstract

We study an efficient dynamic blind source separation algorithm of convolutive sound mixtures based on updating statistical

information in the frequency domain, and minimizing the support of time domain demixing filters by a weighted least square

method. The permutation and scaling indeterminacies of separation, and concatenations of signals in adjacent time frames are resolved

with optimization of l1 � l1 norm on cross-correlation coefficients at multiple time lags. The algorithm is a direct method without

iterations, and is adaptive to the environment. Computations on recorded benchmark mixtures of speech and music signals show

excellent performance. The method in general separates a foreground source from a background of sounds as often encountered in

realistic situations.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Blind source separation (BSS) methods aim to extract
the original source signals from their mixtures based on the
statistical independence of the source signals without
knowledge of the mixing environment. The approach has
been very successful for instantaneous mixtures. However,
realistic sound signals are often mixed through a media
channel, so the received sound mixtures are linear
convolutions of the unknown sources and the channel
transmission functions. In simple terms, the observed
signals are unknown weighted sums of the signals and its
delays. Separating convolutive mixtures is a challenging
problem especially in realistic settings.

In this paper, we study a dynamic BSS method to

separate a signal in the foreground from a background of

sources. The method uses both frequency and time domain
information of sound signals in addition to the indepen-
dence assumption on source signals. First, the con-
volutive mixture in the time domain is decomposed into

instantaneous mixtures in the frequency domain by the fast
Fourier transform (FFT). At each frequency, the joint
approximate diagonalization of eigen-matrices (JADE)
method is applied. The JADE method collects second
and fourth order statistics from segments of sound signals
to form a set of matrices for joint orthogonal diagonaliza-
tion, which leads to an estimate of demixing matrix and
independent sources. However, there remain extra degrees
of freedom: permutation and scaling of estimated sources
at each frequency. A proper choice of these parameters is
critical for the separation quality. Moreover, the large
number of samples of the statistical approach can cause
delays in processing. These issues are to be addressed by
utilizing dynamical information of signals in an optimiza-
tion framework. We propose to dynamically update
statistics with newly received signal frames, then use such
statistics to determine permutation in the frequency
domain by optimizing an l1 � l1 norm of channel to
channel cross-correlation coefficients with multiple time
lags. Though cross-channel correlation functions and
related similarity measure were proposed previously to fix
permutation [13], they allow cancellations and may not
measure similarity as accurately and reliably as the norm
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(metric) we introduced here. The freedom in scaling is fixed
by minimizing the support of the estimated demixing
matrix elements in the time domain. An efficient weighted
least square method is formulated to achieve this purpose
directly in contrast to iterative method in [17]. The
resulting dynamic BSS algorithm is both direct and
adapted to the acoustic environment. Encouraging results
on satisfactory separation of recorded sound mixtures are
reported.

The paper is organized as follows. In Section 2, a review
is presented on frequency domain approach, cumulants
and joint diagonalization problems and indeterminacies.
Then the proposed dynamic method is presented, where
objective functions of optimization, statistics update and
efficient computations are addressed. Numerical results are
shown and analyzed to demonstrate the capability of the
algorithm to separate speech and music mixtures in both
real room and synthetic environments. Conclusions are in
Section 3.

2. Convolutive mixture and BSS

Let a real discrete time signal be sðkÞ ¼ ½s1ðkÞ; s2ðkÞ; . . . ;
snðkÞ�, k a discrete time index, such that the components
siðkÞ (i ¼ 1; 2; . . . ; n), are zero-mean and mutually indepen-
dent random processes. For simplicity, the processing will
divide s into partially overlapping frames of length T each.
The independent components are transmitted and mixed to
give the observations xiðkÞ:

xiðkÞ ¼
Xn

j¼1

XP�1

p¼0

aijðpÞ sjðk � pÞ; i ¼ 1; 2; . . . ; n, (2.1)

where aijðpÞ denote mixing filter coefficients, the pth
element of the P-point impulse response from source i to
receiver j. The mixture in (2.1) is convolutive, and an
additive Gaussian noise may be added. The sound signals
we are interested in are speech and music, both are non-
Gaussian [1]. We shall consider the case of equal number of
receivers and sources, especially n ¼ 2.

An efficient way to decompose the nonlocal equation
(2.1) into local ones is by a T-point discrete Fourier
transform (DFT), X jðo; tÞ ¼

PT�1
t¼0 xjðtþ tÞe�2pJot, where

J ¼
ffiffiffiffiffiffiffi
�1
p

, o is a frequency index, o ¼ 0; 1=T ; . . . ;
ðT � 1Þ=T , t the frame index. Suppose T4P, and extend
aijðpÞ to all p 2 ½0;T � 1� by zero padding. Let HijðoÞ
denote the matrix function obtained by T-point DFT of
aijðpÞ in p, ŝjðo; tÞ the T-point DFT of sjðkÞ in the tth frame.
If P5T , then to a good approximation [17]:

X ðo; tÞ � HðoÞSðo; tÞ, (2.2)

where X ¼ ½X 1; . . . ;X n�
Tr, S ¼ ½ŝ1; . . . ; ŝn�

Tr, Tr is short for
transpose. The components of S remains independent of
each other, the problem is converted to a blind separation
of instantaneous mixture in (2.2). Note that P is on the
order of 40–50 typically, while T is 256 or 512, so the
assumption P5T is reasonable.

2.1. Instantaneous mixture and JADE

Let us briefly review an efficient and accurate method,
the so-called JADE [2–4] for BSS of instantaneous mixture.
There are many other approaches in the literature [6], e.g.
info-max method [1] which is iterative and based on
maximizing some information theoretical function. JADE
is essentially a direct method for reducing covariance. We
shall think of S as a random function of t, and suppress o
dependence. First assume that by proper scaling
E½jSjðtÞj

2� ¼ 1, j ¼ 1; . . . ; n. It follows from independence
of sources that (0 conjugate transpose):

E½SðtÞSðtÞ0� ¼ In; RX � E½X ðtÞX ðtÞ0� ¼ HH 0, (2.3)

the latter identity is a factorization of the Hermitian
covariance matrix of the mixture. However, there is
nonuniqueness in the ordering and phases of columns of
H. Suppose that (1) the mixing matrix H is full rank;
(2) the SjðtÞ’s are independent at any t; (3) the process SðtÞ

is stationary. Let W be a matrix such that In ¼WRX W 0 ¼

WHH 0W 0, W is called a whitening matrix. Then WH is an
orthogonal matrix, denoted by U. Multiplying W from the
left onto (2.2), one finds that

ZðtÞ �WX ðtÞ ¼ USðtÞ. (2.4)

The fourth-order statistics are needed to determine U. The
fourth-order cumulant of four mean zero random variables is

Cum½a; b; c; d� ¼ EðabcdÞ � EðabÞEðcdÞ

� EðacÞEðbdÞ � EðadÞEðbcÞ, (2.5)

which is zero if a; b; c; d split into two mutually independent
groups. For source vector S, Cum½Si;Sj ;Sk;Sl � ¼ kurti dijkl ,
kurti ¼ Cum½Si;Si;Si;Si� is the kurtosis. If kurtia0, the ith
source is called kurtic. Kurtosis is zero for a mean zero
Gaussian random variable. The last assumption of JADE is
that (4) there is at most one nonkurtic source.
Define cumulant matrix set QZðMÞ from Z in (2.4) as the

linear span of the Hermitian matrices Q ¼ ðqijÞ satisfying
(� complex conjugate):

qij ¼
Xn

k;l¼1

CumðZi;Z
�
j ;Zk;Z

�
l Þmlk; 1pi; jpn, (2.6)

where matrix M ¼ ðmijÞ ¼ ele
0
k, el being the unit vector

with zero components except the lth component equal to
one. Eqs. (2.4) and (2.6) imply that (up is the pth column of U):

Q ¼
Xn

p¼1

ðkurtp u0pMupÞupu0p; 8M, (2.7)

or Q ¼ UDU 0, D ¼ diagðkurt1 u01Mu1; . . . ;kurtn u0nMunÞ.
Hence, U is the joint diagonalizer of the matrix set QZðMÞ.
Once U is so determined, the mixing matrix H ¼W�1U . It
can be shown [3] using identity (2.7) that the joint
diagonalizer of QZðMÞ is equal to U up to permutation
and phase, or up to a matrix multiplier P where P has exactly
one unit modulus entry in each row and column. Such a joint
diagonalizer is called essentially equal to U.
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The algorithm of finding the joint diagonalizer is a
generalization of Jacobi method or Givens rotation method
[9]. As the cumulant matrices are estimated in practice, exact
joint diagonalizer may not exist, instead, an approximate
joint diagonalizer, an orthogonal matrix V, is sought to
maximize the quantity: CðV ;BÞ ¼

Pn2

r¼1 jdiagðV
0BrV Þj

2,
where B ¼ fB1;B2; . . . ;Bn2g is a set of basis (or eigen)
matrices of QZðMÞ, jdiagðAÞj

2 is the sum of squares of
diagonals of a matrix A. Maximizing CðV ;BÞ is same as
minimizing off diagonal entries, which can be achieved in a
finite number of steps of Givens rotations. The costs of
joint diagonalization is roughly n2 times that of diagonaliz-
ing a single Hermitian matrix.

Though stationarity is assumed for the theoretical
analysis above, JADE turns out to be quite robust even
when stationarity is not exactly satisfied for signals such as
speech or music.

2.2. Dynamic method of separating convolutive mixture

For each frequency o, Eq. (2.2) is a BSS problem of
instantaneous mixtures. The speech or music signals in
reality are stationary over short time scales and nonsta-
tionary over longer time scales, which depend on the
production details. For speech signals, human voice is
stationary for a few 10ms, and becomes nonstationary for
a time scale above 100ms due to envelope modulations
[7,13]. The short time stationarity permits FFT to generate
meaningful spectra in Eq. (2.2) within each frame. For a
sampling frequency of 16,000Hz, each frame of 512 points
lasts 32ms. The mixing matrix H may depend on t over
longer time scales, denoted by H ¼ Hðo; tÞ, unless the
acoustic environment does not change as in most synthetic
mixing. A demixing method with potential real time
application should be able to capture the dynamic
variation of mixing.

Our approach consists of six steps summarized in the
following pseudo-code. The details are explained in
subsequent subsections. The values of the parameters used
in numerical experiments are listed in Table 1.

(I) Take FFT to go to frequency domain: Collect nT

frames of mixtures, each of length T; take FFT to get
data stream X ðo; tÞ, t ¼ 1; 2; . . . ; nT .

(II) Perform separation at each frequency: Call JADE to
separate instantaneous mixtures X ðo; tÞ at each o,
and obtain mixing matrix H0ðoÞ.

(III) Fix permutation in frequency domain:
(a) Find reference frequency o1 to minimize CðoÞ in

(2.10).
(b) Fix permutation s at other frequencies to max-

imize (2.11).
(IV) Fix scaling in frequency domain: Fix scaling factors to

minimize the support of the demixing matrix in the
time domain by directly solving (2.13).

(V) Take IFFT to come back to time domain: Take inverse
FFT to find time domain demixing matrix hð0ÞðtÞ. The
separated signals sð0ÞðtÞ are obtained from mixture x

convoluting with hð0Þ.
(VI) Fix permutation in time domain to append latest output:

(a) Collect dnT5nT new frames, repeat (I)–(V) with
frames dnT þ 1 to dnT þ nT to generate an
updated time domain demixing matrix hð1ÞðtÞ
and separated signals sð1ÞðtÞ. The cost reduction
techniques mentioned in Section 2.3 can be
applied here to accelerate the computation.

(b) Fix permutation of sð1Þ to be consistent with sð0Þ by
maximizing (2.14) over their overlapped time
interval; normalize maximum norm of hð0Þ and
hð1Þ to one to maintain continuity in loudness;
extend sð0Þ to dnT þ nT frames.

Repeat (VI) till end.

2.2.1. Take FFT and call JADE

Steps (I)–(II) is to find an initialization for Hðo; tÞ. After
receiving the initial nT frames of mixtures, compute their
FFT and obtain X ðo; tÞ, t ¼ 1; 2; . . . ; nT , to collect nT

samples at each discrete frequency. For each o, perform
JADE, and estimate the mixing matrix denoted by H0ðoÞ.
To ensure a good statistical estimate, nT is on the order of
80–100, and may be properly reduced later.
Steps (I)–(II) give separated components of signals over

all frequencies. However, such JADE output has indeter-
minacies in amplitude, order and phase. This benign
problem for instantaneous mixtures becomes a major issue
when one needs to assemble the separated individual
components. For example, the permutation mismatches
across frequencies can degrade the quality of separation
seriously.

2.2.2. Fix permutation in frequency domain

Step (III) is to use nonstationarity of signals to sort out a
consistent order of separated signals in the frequency
domain. Such a method for batch processing was proposed
in [13]. A separation method requiring the entire length of
the signal is called batch processing. The sorting algorithm
of [13] proceeds as follows:

(1) Estimate the envelope variation by a moving average
over a number of frames (beyond stationarity time
scale) for each separated frequency component. The
envelope is denoted by Envðo; t; iÞ, where i is the index
of separated components.

ARTICLE IN PRESS

Table 1

Parameters used in both dynamic and batch processing

Case T Overlap

(%)

nT

(dyn.)

dnT DnT K0 K1 b q nT

(bat.)

(1) 512 0 100 20 30 4 10 1.04 2 200

(2) 256 50 100 20 40 15 20 1.04 2 160

(3) 256 50 100 20 40 10 20 1.04 2 160

(4) 1024 0 120 40 80 14 20 1.04 2 292

J. Liu et al. / Neurocomputing 72 (2008) 521–532 523



Author's personal copy

(2) Compute a similarity measure equal to the sum of
correlations of the envelopes of the separated compo-
nents at each frequency. The similarity measure is
simðoÞ ¼

P
iaj rðEnvðo; t; iÞ;Envðo; t; jÞÞ, where rð�; �Þ

is the normalized correlation coefficients (see (2.9))
involving time average over the entire signal length to
approximate the ensemble average so the t dependence
drops out.

(3) Let o1 be the one with lowest similarity value where
separation is the best. The o1 serves as a reference point
for sorting.

(4) At other frequencies ok (k ¼ 2; 3; . . .), find a permuta-
tion s to maximize

Pn
i¼1 rðEnvðok; t;sðiÞÞ;

Pk�1
j¼1

Envsðoj ; t; iÞÞ, among all permutations of 1; 2; . . . ; n.
Here Envs denotes the sorted envelopes in previous
frequencies.

(5) Permute the order of separated components at the kth
frequency bin according to s in step (4), and define
Envsðok; t; iÞ. Repeat (4) and (5) until k ¼ T .

We shall modify the above sorting method in three
aspects. The first is to use segments of signal instead
of the entire signal to compute statistics (correlations) to
minimize delay in processing. The second is to use
correlation coefficients of separated signals at un-equal

times or multiple time lags in step (2) to better characterize
the degree of separation. Moreover, we notice that the
similarity measure of [13] as seen above is a sum of
correlation coefficients of potentially both signs, and so
can be nearly zero due to cancellations even though
each term in the sum is not small in absolute value.
We introduce an l1 � l1 norm below to characterize
more accurately channel similarity by taking sum of
absolute values of correlation coefficients and maximum
of time lags. The third is to simplify the maximization
problem on s to avoid comparing correlations with
summed envelopes at all previous frequencies. We also
do not use envelopes of signals inside correlation
functions. The reason is that the smoothing nature of
envelope operation reduces the amount of oscillations in
the signals and may yield correlation values less
accurate for capturing the degree of independence.
Specifically, let ŝiðo; tÞ ¼ aiðo; tÞejfiðo;tÞ be the ith
separated signal at frequency o, where aiðo; tÞ ¼ jŝiðo; tÞj,
fi the phase functions, t the frame index. The
correlation function of two time dependent signals over
M frames is

covðaðo; tÞ; bðo0; tÞÞ ¼M�1
XM

t¼1

aðo; tÞb�ðo0; tÞ

�M�2
XM

t¼1

aðo; tÞ
XM

t¼1

b�ðo0; tÞ, (2.8)

and the (normalized) correlation coefficient is

rðaðo; tÞ; bðo0; tÞÞ

¼
covðaðo; tÞ; bðo0; tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

covðaðo; tÞ; aðo; tÞÞcovðbðo0; tÞ; bðo0; tÞÞ
p . (2.9)

From speech production viewpoint, frequency components
of a speech signal do not change drastically in time, instead
are similarly affected by the motion of the speaker’s vocal
chords. The correlation coefficient is a natural tool for
estimating coherence of frequency components of a speech
signal. A similar argument may be applied to music signals
as they are produced from cavities of instruments.
Now with M ¼ nT in (2.8), define

CðoÞ ¼
X

iaj

max
k2f�K0;...;K0g

jrðjŝiðo; tÞj; jŝjðo; t� kÞjÞj,

for o 2 ½oL;oU � (2.10)

with some positive integer K0. Find o1 between oL and oU

to minimize CðoÞ. With o1 as reference, at any other o,
find the permutation s to maximize:

s ¼ argmax
Xn

i¼1

max
k2f�K0;...;K0g

jrðjŝiðo1; tÞj; jŝsðiÞðo; t� kÞjÞj.

(2.11)

Notice that the objective functions in (2.10)–(2.11) are
exactly the l1 � l1 norms over the indices i(j) and k.
Multiple time lag index k is to accommodate the
translational invariance of sound quality to the ear.
Maximizing over k helps to capture the correlation of the
channels, and sum of i (j) reflects the total coherence of a
vector signal.

2.2.3. Fix scaling in frequency domain and IFFT

Step (IV) fixes the scaling and phase indeterminacies in
ŝðo; tÞ. Each row of the demixing matrix H�10 ðoÞ may be
multiplied by a complex number liðoÞ (i ¼ 1; 2 . . . ; n)
before inverse FFT (ifft) to reconstruct demixing matrix
hð0ÞðtÞ in the time domain. The idea is to minimize the
support of each row of the inverse FFT by a weighted least
square method. In other words, we shall select li’s so that
the entries of ifftðH�10 ÞðtÞ � hð0ÞðtÞ are real and nearly zero
if tXQ for some QoT , Q as small as possible, T being the
length of FFT. Smaller Q improves the local approxima-
tion, or accuracy of Eq. (2.2). To be more specific, using
H�10;i ðoÞ to denote the ith row vector of H�10 ðoÞ, we can
explicitly write the equation to shorten the support of
inverse FFT:

ifftðliðoÞH�10;i ðoÞÞðtÞ ¼ 0 (2.12)

in terms of the real and imaginary parts of liðoÞ for
o ¼ 0; 1=T ; . . . ; ðT � 1Þ=T . Those real and imaginary parts
are the variables and the equations are linear. Now, we let t
run from q to T � 1. If we want small support, q should be
small, then there are more equations than unknowns. So
we multiply a weight to each equation and minimize in the
least square sense. Eq. (2.12) for larger t is multiplied by a
larger weight in the hope that the value of the left-hand side
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of (2.12) will be closer to zero during the least square
process. If we choose the weighting function to be the
exponential function bt for some b41, then the above
process can be mathematically written as

½lið0Þ; . . . ; liððT � 1Þ=TÞ�

¼ argmin
XT�1

t¼q

jbtifftðliðoÞH�10;i ðoÞÞðtÞj
2, (2.13)

where H�10;i ðoÞ is the ith row vector of H�10 ðoÞ.
A few comments are in order. First, since the mixing

matrix H0ðoÞ is the FFT of a real matrix, we impose that
H0ðoÞ ¼ H0ð1� oÞ�. So, supposing T is even, we only
need to apply JADE to obtain H0ðoÞ for
o ¼ 0; 1=T ; . . . ; 1=2; H0ð0Þ and H0ð1=2Þ will automatically
be real. When fixing the freedom of scaling in each o, we
choose lð0Þ and lð1=2Þ real, and lðoÞ ¼ lð1� oÞ� for other
o. Second, to fix the overall scaling and render the solution
nontrivial, we set lð0Þ ¼ 1. Third, the weighted least square
problem (2.13) can be solved by a direct method or matrix
inversion [9, Chapter 6].

Note that when n ¼ 2, among the 2ðT � qÞ equations
from (2.12) with t ¼ q; . . . ;T � 1, there are T � 1 variables
including lið1=2Þ, the real and imaginary parts of liðoÞ for
o ¼ 1=T ; . . . ; 1=2� 1=T . So, we can make roughly half of
h
ð0Þ
i ðtÞ � 0, the best one can achieve in general.

Once h
ð0Þ
i ðtÞ ¼ ifftðliðoÞH�10;i ðoÞÞðtÞ is obtained, the sepa-

rated signals, denoted by sð0ÞðtÞ, are then produced by hð0Þ �

x with x being the mixture and � being convolution. Again,
we use t 2 ½0;TnT � as the time index, because we have used
t 2 ½0; nT � as the frame index.

2.2.4. Update and append latest output

The last Step (VI) is to update hð0ÞðtÞ and expand sð0ÞðtÞ
when dnT5nT many new frames of mixtures arrive. Steps
(I)–(V) are repeated using frames from dnT þ 1 to
dnT þ nT , to generate a new time domain demixing matrix
hð1ÞðtÞ, t 2 ½0;T � 1�, and separated signal ~sð1ÞðtÞ, t 2
½TðnT � DnT Þ þ 1;TðnT þ dnT Þ� with T the size of one
frame. Now, ~sð1ÞðtÞ and sð0ÞðtÞ share a common interval of
size TDnT . On this common interval, ~sð1ÞðtÞ and sð0ÞðtÞ will
be the same if we are doing a perfect job and if the ordering
of ~sð1Þ is consistent with that of sð0Þ. In order to determine
the ordering of ~sð1ÞðtÞ, we compute rð~sð0Þi ðtÞ; s

ð1Þ
j ðt� kÞÞ on

this common interval with different k and i; j ¼ 1; . . . ; n.
Then we determine the permutation s of the components of
~sð1ÞðtÞ by minimization:

s ¼ argmax
Xn

i¼1

max
k2f�K1;...;K1g

jrðsð0Þi ðtÞ; ~s
ð1Þ
sðiÞðt� kÞÞj (2.14)

with some constant K1. After doing the necessary
permutation of ~sð1Þ, the separated signals are then extended
to the extra frames dnT þ nT by concatenating the newly
separated dnT many frames of ~sð1Þ with those of ~sð0Þ. The
continuity of concatenation is maintained by requiring that
maxt jh

ðkÞ
ii ðtÞj’s (i ¼ 1; 2; . . . ; n) are invariant in k, where k ¼

1; 2; . . . ; labels the updated filter matrix in time. The
procedure repeats with the next arrival of mixture data,
and is a direct method incorporating dynamic information.
Because sorting order depends only on the relative values

of channel correlations, we observed in practice that the
maxk2f�K : ;...;K :g in Eqs. (2.10), (2.11), (2.14) may be replaced

by
PK :

k¼�K :
, with a different choice of K : value. The

maxk2f�K : ;...;K :g is a more accurate characterization however.

2.2.5. Remarks

We remark that Steps (II) and (III) are similar to the
treatment in [13] which used a second-order decorrelation
method and Givens rotations. Instead we use JADE
because its quality of separation is in general better than
second-order methods for instantaneous mixtures. A
second-order direct method may save more computing
time; however, here, we focus on separation of convolutive
mixtures, and so optimize on quality of Step (II). JADE
also has the advantage of being robust to independent
Gaussian noises, and helps the algorithm to perform on
noisy data. In Step (III), we corrected the similarity
measure [13, Eq. (38)] into a norm (nonnegative s in
Eq. (2.11), and simplified the permutation sorting involved.
Step (IV) is entirely new, and replaces the iterative

scaling fixing method of Parra and Spence [17] by a direct
method of weighted least square. Step (VI) is not needed
for batch methods, and is introduced here for dynamic
adaptivity of our method.

2.3. Adaptive estimation and cost reductions

Cumulants and moments are symmetric functions in
their arguments [15]. For example when n ¼ 2, there are 16
joint fourth-order cumulants from (2.5), however, only six
of them need to be computed, the others follow from
symmetry. Specifically, among the 16 cumulants:

Qð1Þ ¼ Cumðy1; y
�
1; y
�
1; y1Þ; Qð2Þ ¼ Cumðy1; y

�
1; y
�
1; y2Þ,

Qð3Þ ¼ Cumðy1; y
�
1; y
�
2; y1Þ; Qð4Þ ¼ Cumðy1; y

�
1; y
�
2; y2Þ,

Qð5Þ ¼ Cumðy1; y
�
2; y
�
1; y1Þ; Qð6Þ ¼ Cumðy1; y

�
2; y
�
1; y2Þ,

Qð7Þ ¼ Cumðy1; y
�
2; y
�
2; y1Þ; Qð8Þ ¼ Cumðy1; y

�
2; y
�
2; y2Þ,

Qð9Þ ¼ Cumðy2; y
�
1; y
�
1; y1Þ; Qð10Þ ¼ Cumðy2; y

�
1; y
�
1; y2Þ,

Qð11Þ ¼ Cumðy2; y
�
1; y
�
2; y1Þ; Qð12Þ ¼ Cumðy2; y

�
1; y
�
2; y2Þ,

Qð13Þ ¼ Cumðy2; y
�
2; y
�
1; y1Þ; Qð14Þ ¼ Cumðy2; y

�
2; y
�
1; y2Þ,

Qð15Þ ¼ Cumðy2; y
�
2; y
�
2; y1Þ; Qð16Þ ¼ Cumðy2; y

�
2; y
�
2; y2Þ,

we have the relations: Qð2Þ ¼ Qð3Þ� ¼ Qð5Þ� ¼ Qð9Þ,
Qð4Þ ¼ Qð6Þ ¼ Qð11Þ ¼ Qð13Þ, Qð7Þ ¼ Qð10Þ�, Qð8Þ ¼
Qð15Þ ¼ Qð12Þ� ¼ Qð14Þ�, where � is complex conjugate.
For N samples, we only need to compute the following six
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1�N vectors:

Y 1 ¼ ðy
1
1y

1
1; . . . ; y

N
1 yN

1 Þ; Y 2 ¼ ðy
1
1y

1
2; . . . ; y

N
1 yN

2 Þ,

Y 3 ¼ ðy
1
2y

1
2; . . . ; y

N
2 yN

2 Þ; Y 4 ¼ ðy
1
1y

1�
1 ; . . . ; y

N
1 yN�

1 Þ,

Y 5 ¼ ðy
1
1y

1�
2 ; . . . ; y

N
1 yN�

2 Þ; Y 6 ¼ ðy
1
2y

1�
2 ; . . . ; y

N
2 yN�

2 Þ,

then all the fourth-order and second-order statistical
quantities can be reconstructed. For example,

Qð1Þ ¼
1

N
Y 4 � Y

Tr
4 �

1

N2
ð2sumðY 4ÞsumðY 4Þ

þ sumðY 1ÞðsumðY 1Þ
�
ÞÞ, (2.15)

where sumðY iÞ is the summation of the N components
of Y i.

As formula (2.5) suggests, cumulants are updated
through moments when dnT early samples are replaced
by the same number of new samples. As dnT is much less
than the total number of terms nT in the empirical
estimator of expectation, the adjustment costs 2dnT flops
for each second moments and 6dnT flops for each joint
fourth-order moment. The contributions of the early
samples are subtracted from the second and fourth
moments, then the contributions of the new samples are
added. The cumulant update approach is similar to
cumulant tracking method of moving targets ([12] and
references therein).

Due to dynamical cumulants update, the prewhitening
step at each frequency is performed after cumulants are
computed from X ðoÞ. This is different from JADE [3]
where the prewhitening occurs before computing the
commulants. This way, it is more convenient to make use
of the previous cumulant information and updated X ðoÞ.
Afterward, we use the multilinearity of the cummulants to
transform them back to the commulants of the prewhi-
tened X ðoÞ, before joint diagonalization.

It is desirable to decrease nT to lower the number of
samples for cumulants estimation. However, this tends to
increase the variance in the estimated cumulants, and
render estimation less stable in time. Numerical experi-
ments indicated that with nT as low as 40, the separation
using overlapping frames is still reliable with reasonable
quality.

It is known [7] that the identity of a speaker is carried by
pitch (perception of the fundamental frequency in speech
production) which varies in the low frequency range of a
few hundred Hertz. We found that instead of searching
among all frequencies for the reference frequency o1 in
Step (III)(a), it is often sufficient to search in the low
frequency range. The smaller searching range alleviates
the workload in sorting and permutation correcting.
This is similar to a feature oriented method, see [16,18,5]
among others.

2.4. Experimental results

The proposed algorithm with adaptivity and cost
reduction considerations was implemented in Matlab.
The original code of JADE by J.-F. Cardoso is obtained
from a open source (http://web.media.mit.edu/	paris/)
maintained by P. Smaragdis. Separation results with both
dynamic and batch processing of four different types of
mixtures are reported here:

(1) real room recorded speech–music data;
(2) synthetic mixture of speech and music;
(3) synthetic mixture of speech and speech noise;
(4) real room recorded speech–speech data in noisy

environment.

They will be called cases (1)–(4) in the following discussion.
Cases (1) and (4) have been studied by Lee [11] and our
results will be compared with his.
The values of the parameters in our computation are

listed in Table 1. In the table, ‘‘nT (dyn.)’’ is the initial value
of nT in dynamic processing and ‘‘nT (bat.)’’ is the nT in
batch processing. Other than nT , dynamic and batch
process share the same parameters. The frame size is T,
‘‘overlap’’ is the overlapping percentage between two
successive frames, dnT and DnT are as in Step (VI), K0

and K1 are from (2.11) and (2.14), b is in (2.13), and q is the
lower limit of t in (2.12).
Note that the values of oL and oU from (2.10) are not

listed in the table. In our computation, we use the following
two choices:

(A) oL ¼ 0, oU ¼
1
2
.

(B) oL ¼ oU ¼ 4=T , namely fixing reference frequency
o1 ¼ 4=T .

For the four cases reported in this paper, both choices work

and generate very similar results. As a consequence, we will
only plot the results of the first choice. The first choice is
more general while the second is motivated by the pitch
range of speech signal and is computationally more
favorable. However, we do not know precisely the
robustness of the latter.

2.4.1. Computational results

For a quantitative measure of separation, we compute
the maximal correlation coefficient over multiple time lags:

r̄ða; bÞ ¼ max
k2f�K2;...;K2g

jrðaðtÞ; bðtþ kÞÞj (2.16)

with r defined in (2.9). The r̄ is computed for the mixtures,
the sources and the separated signals for both batch and
dynamic processing. Exceptions are the lack of sources in
cases (1) and (4), where we will compute the r̄ for Lee’s
separation results [11]. We choose K2 ¼ 20 in all the
computations. The results are listed in Table 2 which shows
that the r̄ values of the mixtures are much larger than those
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of the dynamically separated signals, which are on the same
order as the r̄ values of the batch separated signals. The r̄
value of Lee’s separation results are 0.0354 and 0.0079 for
cases (1) and (4), which are of the same order as ours. In

the synthetic cases (2) and (3), the r̄ values of the batch
separated signals are on the same order of the r̄ values of
the source signals or 10�2. In cases (2) and (3), we use the
ratio r̄ðy; s1Þ=r̄ðy; s2Þ to measure the relative closeness of a
signal y to source signals s1 and s2. Table 3 lists these ratios
for y being the separated signals by dynamic and batch
methods with A and B denoting the two ways of setting the
reference frequency o1. The outcomes are similar no
matter y ¼ ~s1 or y ¼ ~s2 (first or second separated signal)
in either dynamic or batch cases and either way of selecting
the reference frequency o1.
In case (1), the recorded data [11] consists of two

mixtures of a piece of music (source 1) and a digit (1–10)
counting sentence (source 2) recorded in a normal office
size room. The sampling frequency is 16 kHz, and
about 100k data points are shown in Fig. 1. The signals
last a little over 6 s. The result of dynamic BSS algorithm is
shown in Fig. 2. As a comparison, we show in Fig. 3
result of batch processing of Steps (I)–(V) of the
algorithm with nT ¼ 200. The batch processing gives a
clear separation upon listening to the separated signals.
The dynamic processing is comparable. The filter coeffi-
cients in the time domain hijðtÞ at the last update of
dynamic processing are shown in Fig. 4. Due to weighted
least square optimization in Step (IV), they are localized
and oscillatory with support length Q close to half of the
FFT size T.
For cases (2) and (3), we show the envelopes of the

absolute values of the mixtures or the separated signals. The
signal envelope was computed using the standard proce-
dure of amplitude demodulation, i.e. low-pass filtering the
rectified signal. The filter was an FIR filter with 400 taps
and the cutoff frequency was 100Hz. Signal envelopes help
to visualize and compare source and processed signals. We
have normalized all the envelopes so that the maximum
height is 1. The values of aij in (2.1), which are used to
synthetically generate the mixtures, are shown in Fig. 5
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Table 2

Values of the correlation coefficient r̄ðy; zÞ, ðy; zÞ being either the two

mixtures or the two sources or the two separated signals

r̄ð�; �Þ Mixture Dyn. separation Bat. separation Sources/Lee’s

(1)-A 0.8230 0.0269 0.0160 0.0354 (L)

(1)-B 0.8230 0.0225 0.0159 0.0354 (L)

(2)-A 0.6240 0.0503 0.0673 0.0201 (S)

(2)-B 0.6240 0.0182 0.0600 0.0201 (S)

(3)-A 0.4613 0.0351 0.0378 0.0243 (S)

(3)-B 0.4613 0.0267 0.0677 0.0243 (S)

(4)-A 0.5466 0.0067 0.0214 0.0079 (L)

(4)-B 0.5466 0.0078 0.0137 0.0079 (L)

The A and B in the first column denote the two different ways of selecting

the reference frequency o1. Lee’s separation results (L) substitute for

sources (S) in case of room recordings.

Table 3

Ratios of r̄ðy; s1Þ and r̄ðy; s2Þ, y being a separated signal on the first

column by dynamic or batch method, s1 and s2 are source signals

r̄ðy; s1Þ=r̄ðy; s2Þ Case (2) Case (3)

y ¼ dyn: ~s1ðAÞ 4.5899 4.5096

y ¼ dyn: ~s2ðAÞ 0.1086 0.2852

y ¼ dyn: ~s1ðBÞ 5.3083 5.8411

y ¼ dyn: ~s2ðBÞ 0.0494 0.2799

y ¼ bat: ~s1ðAÞ 15.0912 1.4632

y ¼ bat: ~s2ðAÞ 0.0760 0.1665

y ¼ bat: ~s1ðBÞ 6.2227 25.8122

y ¼ bat: ~s2ðBÞ 0.0636 0.1719

The ratio measures the relative closeness of y to s1 and s2. If the ratio is

larger (smaller) than one, y is closer to s1 and (s2). The A and B in the first

column denote the two different ways of selecting o1.

0 1 2 3 4 5 6 7 8 9 10

x 104

0

0.5

−0.5

−0.5

−1

1
Recorded mixture signals in a real room

0 1 2 3 4 5 6 7 8 9 10

x 104

0

0.5

Fig. 1. Case (1), two recorded signals in a real room where a speaker was counting 10 digits with music playing in the background.
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(see [19, (8)]). Figs. 6 and 7 show the mixtures and
separated signals of case (2). Figs. 8 and 9 show the
mixtures and separated signals of case (3). In view of these
plots, Tables 2 and 3, separation is quite satisfactory, which
is also confirmed by hearing the separated signals.

In case (4), we computed Lee’s recorded speech–speech
mixtures in a conference room with air-conditioning noise
[11]. The last row of Table 2 showed the r̄ values of our
dynamic (batch) separation and those of Lee’s info-max
type method [11]. A typical demixing filter matrix in the
time domain is shown in Fig. 10. Our filter size is 1024,
while Lee’s is 2048. Upon hearing the separated signals,
our results and Lee’s are quite similar.

2.4.2. Further remarks and comparison with info-max

We summarize in Table 4 the time consumption in the
batch algorithm. The difference between the total time and
the time for JADEþ switchþ scaling is the time for FFT,
IFFT, convolution and others. Dynamic processing takes
slightly longer due to additional updates. These runs were
done in Matlab on a Compaq Presario V6133CL notebook
with 1.6GHz CPU and 2G bytes of memory. The
processing time can be reduced (much) further if one uses
C/C++ or Fortran instead of Matlab.
In Step (II), JADE can be replaced by other instanta-

neous separation method such as AMUSE [6] or info-max
[1]. The advantage of JADE comparing with the others is
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Fig. 2. Case (1) with choice A, separated digit counting sentence (bottom) and background music (top) by the proposed dynamic method. Choice B gives

similar results.
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Fig. 3. Case (1) with choice A, separated digit counting sentence (bottom) and background music (top) by batch processing using the proposed Steps

(I)–(V). Batch processed signals sounds a little smoother. Choice B gives similar results.
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the quality and robustness. Unlike iterative methods such
as info-max, our method is a direct method so that: (1) no
prior knowledge of the probability distribution of the
sources is needed; (2) no initial guess of demixing filter is
required; (3) the algorithm is dynamically stable. Info-max
method is a time domain method, computationally simple

and low cost, though certain choices may have to be made
by users. As reported in [8], it may need a judicious choice
of initial data and a proper step size to avoid divergence in
iteration. In [8], an a posteriori scalar gradient constraint is
proposed to alleviate such problems. The price to pay in
our method for the benefits (1)–(3) is that steps (III) and
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Fig. 4. Case (1) with choice A, the localized and oscillatory filter coefficients in the time domain at the last frame of dynamic processing. Choice B gives

similar results.
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Fig. 5. The weights aij used in generating synthetic mixtures of cases (2) and (3), as proposed in [19].
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Fig. 6. Case (2), the synthetic mixtures are generated by a female voice and a piece of instrumental music.
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(IV) require more data processing and computation time.
The data processing may be improved by various strategies
as noted in the discussion of Section 2.3. Much future work
is needed here.

Steps (III) (permutation) and (IV) (scaling) are necessary
for separation to work, in particular Step (IV). Our
numerical experiments suggest that Step (IV) is critical.
Dropping Step (IV) can lead to outputs that sound no
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Fig. 7. Case (2) with choice A, the envelopes of the separated signals from mixtures whose envelopes are in Fig. 6. The small amplitude portion of the

music is well recovered. Choice B gives similar results.
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Fig. 8. Case (3), the synthetic mixtures of a female voice and a speech noise with signal-to-noise ratio equal to �3.8206 dB. The x1 plot shows a speech in a

strong noise, the valley structures in the speech signal are filled by noise.
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Fig. 9. Case (3) with choice A, the envelopes of the separated signals, noise (top) and speech (bottom). The envelopes of the two mixtures are in Fig. 8. The

strongly noisy x1 in Fig. 8 has been cleaned, the valleys in the envelope re-appeared. Choice B gives an even better result.
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better than the original mixtures. Without Step (III),
sometimes we can still get separated signals, for example, in
case (1)-dyn. Even though such results are not as good as
those with Step (III), they are better than those without
Step (IV). In general, dropping Step (III) will also affect
separation quality.

Step (VI) is not computationally demanding and may be
ignored, e.g. in case (1)-dyn with the current parameters. In
general, it is helpful for eliminating possible mis-matches
when joining signal segments.

The output from our algorithm is rather stable for
parameters in the ranges specified in Table 1. For example,
in case (1), the parameters in Table 1 can be changed to
other values in the same column without affecting much
the separation, except the value of K0. The parameter K0 is
more sensitive. For example, in case (1)-batch, with other
parameters fixed, taking K0 ¼ 15 yields similar results,
while K0 ¼ 10 deteriorates results. It appears that choosing
K0 near the lower (upper) end of its range is a better choice.
However, there is no guarantee that a single preset value of
K0 is optimal for different mixture signals. This may be an
indication of the limit of accuracy of statistical approach.

3. Conclusions

A dynamic BSS algorithm is proposed to track the time
dependence of signal statistics and to be adaptive to the
potentially time varying environment. Besides efficiently
updating cumulants, the method made precise the
procedure of sorting permutation indeterminacy in the
frequency domain by optimizing a metric (the l1 � l1

norm) on multiple time lagged channel correlation

coefficients. A direct and efficient weighted least square
approach is introduced to compactify the support of
demixing filter to improve the accuracy of frequency
domain localization of convolutive mixtures. Experimental
results show robust and satisfactory separation of real
recorded data and synthetic mixtures. An interesting line of
future work will be concerned with various strategies to
speed up computation.
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