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Abstract
We study a class of nonlinear nonlocal cochlear models of the transmission
line type, describing the motion of basilar membrane (BM) in the cochlea.
They are damped dispersive partial differential equations (PDEs) driven by time
dependent boundary forcing due to the input sounds. The global well-posedness
in time follows from energy estimates. Uniform bounds of solutions hold in
the case of bounded nonlinear damping. When the input sounds are multi-
frequency tones, and the nonlinearity in the PDEs is cubic, we construct smooth
quasi-periodic solutions (multi-tone solutions) in the weakly nonlinear regime,
where new frequencies are generated due to nonlinear interaction. When the
input consists of two tones at frequencies f1, f2 (f1 < f2), and high enough
intensities, numerical results illustrate the formation of combination tones at
2f1 − f2 and 2f2 − f1, in agreement with hearing experiments. We visualize
the frequency content of solutions through the FFT power spectral density of
displacement at selected spatial locations on the BM.

Mathematics Subject Classification: 35L05, 35Q72, 35L50, 41A60, 37M05

1. Introduction

Digital signal processing on sounds is an essential component of modern hearing devices
[18], and a useful tool for evaluating acoustic theories of peripheral auditory systems [15],
among others. A fundamental issue is to model the auditory response to complex tones
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because the nonlinear interaction of acoustic waves of different frequencies allows for audio
compression [18] among other applications. Nonlinearities are known to originate in the
cochlea and are further modified in higher level auditory pathways. The cochlear mechanics
has first-principle descriptions, and so partial differential equations (PDEs) become a natural
mathematical framework to initiate computation. However, in vivo cochlear dynamics is
not a purely mechanical problem, and neural feedback is present to modify responses. To
incorporate both aspects, a first-principle-based PDE model was studied in [23] for voice signal
processing, where the neural aspect is introduced in the model phenomenologically. The first-
principle-based PDE approach is more systematic compared with the filter bank method [15],
and has shown encouraging results. In [23], time domain computation on multi-tone inputs
revealed tonal suppressions in qualitative agreement with earlier neural experimental findings.
Though both methods are nonlinear, a major difference between [15] and [23] is that the former
simulates the basilar membrane (BM) response at a single site while the latter contains the BM
response over its entire length with nearest-neighbour coupling.

In this paper, we shall analyse the well-posedness and construct multi-tone solutions of
such PDE models in the form:

pxx − Nutt = εs(x)ut , x ∈ (0, L), (1.1)

p = mutt + r(x, |u|, |ut |)ut + s(x)u, (1.2)

where p is the fluid pressure difference across the BM, u the BM displacement, and L the
longitudinal length of BM; N is a constant depending on fluid density and cochlear channel size,
εs(x) � 0 is the damping of longitudinal fluid motion, and m, r and s are the mass, damping
and stiffness of BM per unit area, with m a constant and s a continuously differentiable non-
negative function of x. The coefficient r is a nonlinear function(al) of x, u, ut :

r(x, |u|, |ut |) = ra(|ut |2) + γ

∫ L

0
P(|u(x ′, t)|)K(x − x ′) dx ′. (1.3)

Here ra(·) is the local part of BM damping, a non-negative continuously differentiable
monotone increasing function and ra(0) > 0. In the nonlocal BM damping and K = K(x)

is a positive localized Lipschitz continuous kernel function with total integral over x ∈ R1

equal to 1 and P(·) is a non-negative continuously differentiable function such that for some
constant C > 0

P(0) = 0, P (q) � C(1 + q2), ∀q � 0. (1.4)

The nonlinear nonlocal form of damping (1.3) implies that the response at certain location
x ′ (excitation) can increase the damping at a nearby point x, thus inhibiting the response there.
Inhibition induced by excitation is observed experimentally in terms of firing rates of auditory
neurons under multi-tone sound input, [5, 6]. The nonlinear nonlocal damping, proposed
earlier in [14, 9], is an efficient way of extracting the auditory neural feedback to BM and
model the nonlinear interactions of complex sounds [4, 23]. The monotonicity of ra in |ut | and
often of P in |u| is consistent with the reduced sensitivity or compression of BM responses at
increasing sound input intensities [19].

The boundary and initial conditions of the system are:

px(0, t) = TMpT (t) ≡ f (t), p(L, t) = 0, (1.5)

u(x, 0) = u0(x), ut (x, 0) = u1(x), (1.6)

where the initial data is such that (u0, u1) ∈ (H 1([0, L]))2, (u0, u1)(L) = (0, 0); pT (t)

is the input sound pressure at the eardrum and TM is a bounded linear map modelling the
functions of the middle ear, with output depending on the frequency content of pT (t). If
pT = ∑JM

j=1 Aj exp{iωj t} + c.c., a multi-tone input, c.c. denoting the complex conjugate, JM
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a positive integer, then TMpT (t) = ∑JM

j=1 Bj exp{iωj t} + c.c., where Bj = aM(ωj )Aj and,
aM(·) a scaling function built from the filtering characteristics of the middle ear [7].

Cochlear modelling has a long history, and various linear models have been studied at
length by analytical and numerical methods (see [10, 12] and references therein). A brief
derivation of the cochlear model of the transmission line type, e.g. the linear portion of
(1.1)–(1.6), is nicely presented in [20] based on fluid and elasticity equations.

It has been realized that nonlinearity is essential for multi-tone interactions [8, 11, 3, 6]
etc. Nonlinearity could be introduced phenomenologically based on the spreading of electrical
and neural activities between hair cells at different BM locations suggested by experimental
data [9, 4]. Such a treatment turned out to be efficient for signal processing purposes [23], and
(1.3)–(1.4) is a generalization of existing nonlinearities [9, 4, 21].

Multi-tone solutions require one to perform numerical computations in the time domain.
The model system (1.1)–(1.6) is dispersive, and long waves tend to propagate with little decay
from the entrance point x = 0 (stapes) to the exit x = L (helicotrama). The function εs(x) is
supported near x = L and its role in numerics is to suck out the long waves accumulating near
the exit [23]. In the analysis of model solutions, which are concerned mainly with interior
properties, however, we shall set εs to zero for technical convenience.

Selective positive or negative damping has been a novel way to filter images in the PDE
method of image processing (see [17] among others).

The rest of this paper is organized as follows. In section 2, we perform energy estimates of
solutions for the model system (1.1)–(1.6), prove the global well-posedness and obtain growth
and uniform bounds in Sobolev spaces. In section 3, we construct exact multi-frequency
solutions when γ is small enough and nonlinearity is cubic, using contraction mapping in a
suitable Banach space. The constructed solutions contain all linear integral combinations of
input frequencies. In section 4, for two input tones with frequencies f1 and f2 (f1 < f2),
we illustrate numerically the combination tones, 2f1 − f2 and 2f2 − f1, generated on power
spectral density plots at selected points on BM. Such tones are heard on musical instruments
(piano and violin), known as the Tartini tones discovered by the celebrated Italian composer
Giuseppe Tartini [2]. The conclusions are given in section 5.

2. Global well-posedness and estimates

Let us consider the initial boundary value problem (IBVP) defined by (1.1)–(1.6) and show
that solutions exist uniquely in H 1([0, L]) for all time. To this end, it is convenient to work
with the equivalent integral form of the equations. It follows from (1.1) and (1.5) that

px =
∫ x

0
(Nutt + εs(x)ut ) dx + f (t),

−p(t, x) =
∫ L

x

dx ′
∫ x ′

0
(Nutt + εsut ) dx ′′ + f (t)(L − x).

(2.1)

Combining (1.2) and (2.1), we get

mutt +
∫ L

x

dx ′
∫ x ′

0
(Nutt + εsut ) dx ′′ + f (t)(L − x) = −r(x, |u|, |ut |)ut − s(x)u, (2.2)

with initial data (1.6). Let w = (w1, w2) = (u, ut ), and write (2.2) in the system form:

w1,t = w2, (2.3)

mw2,t +
∫ L

x

dx ′
∫ x ′

0
Nw2,t dx ′′ = −

∫ L

x

dx ′
∫ x ′

0
εsw2 dx ′′

−r(x, |w1|, |w2|)w2 − s(x)w1 + f (t)(x − L). (2.4)
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The related integral form is

w1 = u0 +
∫ t

0
w2(x, τ ) dτ,

Aw2 = Au1 −
∫ t

0
dτ

∫ L

x

dx ′
∫ x ′

0
εsw2 dx ′′

−
∫ t

0
dτr(x, |w1|, |w2|)w2 − s(x)

∫ t

0
w1 dτ + (x − L)

∫ t

0
f (τ) dτ,

(2.5)

where A : L2([0, L]) → L2([0, L]) is a bounded self-adjoint linear operator:

Ag ≡ mg +
∫ L

x

dx ′
∫ x ′

0
Ng dx ′′ ≡ mg + Ãg. (2.6)

To see the self-adjointness of A, let g, h ∈ L2([0, L]), then (Ãg, h) = (g, Ãh) or∫ L

0

(∫ L

x

dx ′
∫ x ′

0
g(x ′′) dx ′′

)
h(x) dx =

∫ L

0

(∫ L

x

dx ′
∫ x ′

0
g(x ′′) dx ′′

)
d

∫ x

0
h

=
∫ L

0

(∫ x

0
dx ′g(x ′)

) (∫ x

0
dx ′h(x ′)

)
dx,

hence (Ag, h)L2 = (g, Ah)L2 . Clearly, A is bounded; also (A·, ·) = (A·, ·)L2 is an equivalent
square L2 norm:

(Ag, g) = m‖g‖2
2 + N

∫ L

0

(∫ x

0
g

)2

dx � m‖g‖2
2,

(Ag, g) � m‖g‖2
2 + NL2‖g‖2

2 = (m + NL2)‖g‖2
2.

(2.7)

The lower bound in (2.7) implies that A has a bounded inverse [24]. The bounded inverse of
A is denoted by A−1 below.

Now, we establish the global existence of solutions of (2.3)–(2.4) in the function space
C([0, ∞); (H 1([0, L]))2). It is straightforward to show by the contraction mapping principle
that if ‖(u0, u1)‖H 1 < ∞, there is a time t∗ such that (2.5) has a unique solution in
C([0, t∗); (H 1([0, L]))2) under our assumptions on the nonlinearities. Such a solution in
fact lies in C1([0, t∗); (H 1([0, L]))2), and obeys the differential form of equations (2.3)–(2.4),
with both sides interpreted in the H 1 sense. Taking the limit x → L, we find that the
system (2.3)–(2.4) reduces to the ODE system:

w1,t = w2,

w2,t = −r(t)w2 − s(L)w1,

with initial data (w1, w2)(L, 0) = (0, 0); hence (w1, w2)(L, t) = (0, 0), ∀t ∈ (0, t∗).
Let us derive estimates of solutions in H 1 that are global in time to extend the local

solutions to global ones (so t∗ = ∞). The left-hand side of (2.4) is just (Aw2)t , and

(w2, (Aw2)t ) = (w2, A(w2)t ) = (Aw2, w2,t ) = (w2,t , Aw2),

therefore,

d

dt
(Aw2, w2) = (w2,t , Aw2) + (Aw2,t , w2) = 2(w2, Aw2,t ), (2.8)

and hence 1
2 (d/dt)(Aw2, w2) = (w2, Aw2,t ). Multiplying (2.3) by w1, (2.4) by w2, adding the

two expressions and integrating over [0, L], we estimate, using the Cauchy–Schwarz inequality
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and (1.3) that

(w1, w1,t ) + (w2, (Aw2)t ) = 1

2

d

dt
((w1, w1) + (Aw2, w2))

= −
(∫ L

x

dx ′
∫ x ′

0
εsw2 dx ′′, w2

)
− (rw2, w2) + (w2, w1) − (sw1, w2)

+(f (t)(x − L), w2)

� −ra(0)‖w2‖2
2 + ra(0)‖w2‖2

2 +
1

4ra(0)
‖f (t)(x − L)‖2

2

−
∫ L

0

(∫ x

0
εsw2

) (∫ x

0
w2

)
dx + ‖(1 − s)‖∞‖w2‖2‖w1‖2

� 1

12ra(0)
|f (t)|2L3 + L2‖εs‖2‖w2‖2

2 +
1

2
‖1 − s‖∞(‖w1‖2

2 + ‖w2‖2
2)

�
(

1

2
‖1 − s‖∞ + L2‖εs‖2

)
‖w2‖2

2 +
1

2
‖1 − s‖∞‖w1‖2

2 +
1

12ra(0)
|f (t)|2L3.

(2.9)

Let C1 = max((1/m)‖1−s‖∞ +(2L2/m)‖εs‖2,
1
2‖1−s‖∞) and 2E = (w1, w1)+(Aw2, w2);

we have from (2.9)
dE

dt
� C1E +

1

12ra(0)
|f (t)|2L3, (2.10)

or

E(t) � E(0) + C1

∫ t

0
E(s) ds +

L3

12ra(0)

∫ t

0
|f |2(s ′) ds ′.

The Gronwall inequality implies

E(t) �
(

E(0) +
L3

12ra(0)

∫ t

0
|f |2(t ′) dt ′

)
eC1t ,

or

‖(w1, w2)‖2
2 � min(1, m)−1

(
E(0) +

L3

12ra(0)

∫ t

0
|f |2(t ′) dt ′

)
eC1t . (2.11)

Next, we obtain the gradient estimates. Differentiating (2.3)–(2.4) with respect to x gives

d

dt
w1,x = w2,x, (2.12)

d

dt

(
mw2,x − N

∫ x

0
w2(x

′, ·) dx ′
)

=
∫ x

0
εs(x

′)w2(x
′) dx ′ − rw2,x − s ′w1 − sw1,x + f (t)

−
(

2r
′
aw2w2,x + γ

∫ L

0
P(w1)(x

′, t)Kx(x − x ′) dx ′
)

w2. (2.13)

Multiplying (2.12) and (2.13) by w1,x and w2,x , and integrating over x ∈ [0, L], we find

1

2

d

dt
(‖w1,x‖2

2 + m‖w2,x‖2
2) = N

∫ L

0
w2,x

∫ x

0
w2,t (x

′, ·) dx ′ + (w1,x, w2,x)

+

(
w2,x,

∫ x

0
εsw2

)
−

∫ L

0
rw2

2,x −
∫ L

0

(
2r

′
aw2w2,x + γ

∫ L

0
P(w1)Kx

)

×w2w2,x −
∫ L

0
s ′w1w2,x −

∫ L

0
sw1,xw2,x + f (t)

∫ L

0
w2,x . (2.14)
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The integral in the first term of the right-hand side of (2.14) can be written as

−N

∫ L

0
w2w2,t dx = −N

2

d

dt

∫ L

0
w2

2 dx, (2.15)

where we applied integration by parts once and w2(L, t) = 0.
The other terms are estimated as follows:

−
∫ L

0
dx

(
γ

∫ L

0
P(w1)(x

′, ·)Kx(x − x ′) dx ′
)

w2w2,x

� C

∫ L

0
|w2w2,x |

∫ L

0
(1 + |w1|2)|Kx |(x − x ′) dx ′

� C(1 + ‖w1‖2
2)

∫ L

0
|w2w2,x |

� C(1 + ‖w1‖2
2)‖w2‖2‖w2,x‖2

� δ0‖w2,x‖2
2 +

1

4δ0
C2(1 + ‖w1‖2

2)
2‖w2‖2

2, (2.16)

for any δ0 > 0, C = C(‖Kx‖∞), by (1.4). Integration by parts and w2(L, t) = 0 give(
w2,x,

∫ x

0
εsw2

)
= −

∫ L

0
εsw

2
2 dx � 0. (2.17)

Using the Cauchy–Schwarz inequalities we get

−
∫ L

0
rw2

2,x − 2
∫ L

0
r ′
aw

2
2w

2
2,x � −ra(0)‖w2,x‖2

2, (2.18)

−
∫ L

0
s ′w1w2,x dx −

∫ L

0
sw1,xw2,x + (w1,x, w2,x)

� ‖1 − s‖∞‖w1,x‖2‖w2,x‖2 + ‖s ′‖∞‖w1‖2‖w2,x‖2

� 2δ0‖w2,x‖2
2 +

1

16δ0
‖1 − s‖2

∞‖w1,x‖2
2 +

1

16δ0
‖s ′‖2

∞‖w1‖2
2, (2.19)

f (t)

∫ L

0
w2,x � |f (t)|L1/2‖w2,x‖2 � δ0‖w2,x‖2

2 +
1

4δ0
|f (t)|2L. (2.20)

Combining (2.14)–(2.20) with 4δ0 = ra(0)/2, we get
d

dt

1

2
(‖w1,x‖2

2 + m‖w2,x‖2
2) � −N

2

d

dt
‖w2‖2

2 − ra(0)

2
‖w2,x‖2

2 + C2(t) + C3(t)‖w1,x‖2
2,

(2.21)

where

C2(t) = |f (t)|2L
4δ0

+
‖s ′‖2

∞
16δ0

‖w1‖2
2 +

C2

4δ0
(1 + ‖w1‖2

2)
2‖w2‖2

2, (2.22)

C3(t) = 1

16δ0
‖1 − s‖2

∞, (2.23)

and ‖(w1, w2)‖2 are bounded as in (2.11). Integrating (2.21) over t ∈ [0, T ], we find

m′‖(w1,x, w2,x)‖2
2(T ) +

N

2
‖w2‖2

2 � C4 +
∫ T

0
C2(t

′) dt ′ +
∫ T

0
C3(t

′)‖(w1, w2)x‖2
2, (2.24)

where m′ ≡ 1
2 min(1, m),

C4 = 1

2
max(1, m)‖(u0,x, u1,x)‖2

2 +
N

2
‖u1‖2

2, (2.25)
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and the Gronwall inequality implies

‖(w1,x, w2,x)‖2
2(T ) � 1

m′

(
C4 +

∫ T

0
C2(t) dt

)
exp

{
1

m′

∫ T

0
C3(t) dt

}
. (2.26)

We see from (2.4) that w2,t ∈ C([0, ∞); H 1([0, L])); hence the pressure p ∈ C([0, ∞);
H 3([0, L])) from (2.1). We have thus shown the following theorem.

Theorem 2.1. Under the growth condition (1.4) and the initial boundary conditions (1.5) and
(1.6), the model cochlear system (1.1)–(1.3) has unique global solutions:

(u, ut , p) ∈ C([0, ∞); (H 1([0, L]))2 × H 3([0, L])).

The estimates can be improved with the additional assumption:

s(x) � s0 > 0, ∀x ∈ [0, L], ‖εs‖2 <
3ra(0)

2L3/2
. (2.27)

Theorem 2.2 (growth bounds). Under the additional assumption (2.27), the global solutions
in theorem 2.1 satisfy the bounds

‖(u, ut )‖2
2 +

∫ t

0
‖ut‖2

2(t
′) dt ′ � a1 + a2

∫ t

0
|f (t ′)|2 dt ′,

‖(ux, ux,t )‖2
2 +

∫ t

0
‖ux,t‖2

2(t
′) dt ′ � a3 + a4

∫ t

0

(
1 +

∫ t ′

0
|f (t ′′)|2 dt ′′

)3

dt ′,
(2.28)

for some positive constants ai , i = 1, 2, 3, 4.

Proof. Multiplying (2.3) by s(x)w1, and (2.4) by w2, adding the two expressions and
integrating over [0, L], we estimate using the Cauchy–Schwarz inequality,

(sw1, w1,t ) + (w2, (Aw2)t ) = −
(∫ L

x

dx ′
∫ x ′

0
εsw2 dx ′′, w2

)

−(rw2, w2) + (f (t)(x − L), w2)

� −
(∫ x

0
w2(x

′) dx ′,
∫ x

0
εs(x

′)w2(x
′) dx ′

)
− ra(0)‖w2‖2

2 + f (t)(w2, (x − L))

� −
(

ra(0) − 2

3
L3/2‖εs‖2

)
‖w2‖2

2 + δ‖w2‖2
2 +

|f |2
4δ

‖(x − L)‖2
2. (2.29)

Choose 2δ = ra(0) − 2
3L3/2‖εs‖2 > 0 we find

1

2

d

dt
((sw1, w1) + (Aw2, w2)) � −δ‖w2‖2

2 +
|f |2
4δ

L3

3
. (2.30)

So

1

2
((sw1, w1) + (Aw2, w2))(t) � −δ

∫ t

0
‖w2‖2

2 + c0 + c1

∫ t

0
|f (t ′)|2 dt ′. (2.31)

where c0 = 1
2 ((sw1, w1) + (Aw2, w2))(0), and c1 = L3/12δ. Hence,

min(s0, m)

2
‖(w1, w2)‖2

2 � c0 + c1

∫ t

0
|f (t ′)|2 dt ′,∫ t

0
‖w2‖2

2(t
′) dt ′ � δ−1c0 + δ−1

∫ t

0
|f (t ′)|2 dt ′.

(2.32)
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In particular, if f (t) is a bounded continuous function, (2.32) gives the growth bounds:

‖(w1, w2)‖2 � O(t1/2),

∫ t

0
‖w2‖2

2(t
′) dt ′ � O(t), (2.33)

implying that ‖w2‖2 has a bounded, time averaged L2 norm square.
Similarly, we improve the gradient estimates. Multiplying (2.12) by sw1,x , (2.13) by w2,x

and integrating over x ∈ [0, L], we cancel out the two integrals on s(x)w1,xw2,x . Proceeding
as before, we arrive at:
d

dt

1

2
((sw1,x, w1,x) + m‖w2,x‖2

2) � −N

2

d

dt
‖w2‖2

2 − ra(0)

2
‖w2,x‖2

2 + C2(t), (2.34)

and so integrating over [0, T ] gives:

1

2
((sw1,x, w1,x) + m‖w2,x‖2

2)(T ) +
ra(0)

2

∫ T

0
‖w2,x‖2

2(t
′) dt ′ +

N

2
‖w2‖2

2(T )

� 1

2
((su0,x, u0,x) + m‖u1,x‖2

2) +
N

2
‖u1‖2

2 +
∫ T

0
C2(t

′) dt ′

≡ C5,0 +
∫ T

0
C2(t

′) dt ′. (2.35)

If s(x) � s0 > 0, then,

‖(w1,x, w2,x)‖2
2(T ) +

ra(0)

2m′′

∫ T

0
‖w2,x‖2

2(t) dt � 1

m′′

(
C5,0 +

∫ T

0
C2(t) dt

)
, (2.36)

where m′′ = 1
2 min(s0, m). Substituting (2.32) in (2.36) gives (2.28). In particular, for a

bounded continuous f (t),

‖(w1,x, w2,x)‖2
2(T ) +

1

2m′′

∫ T

0
‖w2,x‖2

2(t) dt � O(T 3). (2.37)

This completes the proof.

If the nonlinear damping functions are bounded, i.e. if

ra(ξ) � C6, r ′
a(ξ)ξ � C6, P (ξ) � C6, ∀ξ � 0, (2.38)

for some positive constant C6, then we have the following theorem.

Theorem 2.3 (uniform bounds). Under the assumptions (2.27) and (2.38), and that f (t) is
a bounded continuous function, the global solutions in theorem 2.1 are uniformly bounded:

‖(u, ut )‖H 1 + ‖p‖H 3 � C7 < ∞, ∀t � 0,

for some positive constant C7. Moreover, the dynamics admit an absorbing ball:

lim sup
t→∞

(‖(u, ut )‖H 1 + ‖p‖H 3) � C8,

where C8 is independent of initial data.

See [21] for an example of a bounded damping function. The energy inequality (2.30)
lacks a term like −const‖w1‖2

2 on the right-hand side, and so is insufficient to provide uniform
bounds. The idea is to bring out the skew symmetric part of the system.

Proof. Multiply (2.3) by mw2, (2.4) by w1, integrate over x ∈ [0, L], and add the resulting
expressions to get

m(w1, w2)t + (Ãw2,t , w1) = m‖w2‖2
2 − (sw1, w1) − (rw2, w1)

+(f (t)(x − L), w1) −
(

w1,

∫ L

x

dx ′
∫ x ′

0
εsw2 dx ′′

)
. (2.39)
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Using the identity

d

dt
(Ãw2, w1) = (Ãw2,t , w1) + (Ãw2, w1,t ) = (Ãw2,t , w1) + (Ãw2, w2),

we have
d

dt
[m(w1, w2) + (Ãw2, w1)] = (Ãw2, w2) + m‖w2‖2

2 − (sw1, w1) − (rw2, w1)

+(f (t)(x − L), w1) −
(

w1,

∫ L

x

dx ′
∫ x ′

0
εsw2 dx ′′

)

� (NL2 + m)‖w2‖2
2 − s0‖w1‖2

2 + C6‖w2‖2‖w1‖2

+|f |L3/2‖w1‖2 + L3/2‖ε2‖2‖w1‖2‖w2‖2. (2.40)

Applying the Cauchy–Schwarz to polarize the last three terms we get

C6‖w2‖2‖w1‖2 � C2
6

s0
‖w2‖2

2 +
s0

4
‖w1‖2

2,

|f |L3/2‖w1‖2 � |f |2L3

s0
+

s0

4
‖w1‖2

2,

L3/2‖ε2‖2‖w1‖2‖w2‖2 � L3‖ε2‖2
2

s0
‖w2‖2

2 +
s0

4
‖w1‖2

2.

(2.41)

It follows from (2.40) that

d

dt
[m(w1, w2) + (Ãw2, w1)] � C9‖w2‖2

2 − s0

4
‖w1‖2

2 +
|f |2L3

s0
, (2.42)

where

C9 = NL2 + m +
C2

6

s0
+

L3‖ε2‖2
2

s0
.

Multiplying (2.30) by a positive constant Cp and adding the resulting inequality to (2.42),
we find

d

dt
Ep � (−δCp + C9)‖w2‖2

2 − s0

4
‖w1‖2

2 + |f |2
(

L3

s0
+

CpL3

12δ

)
, (2.43)

where

Ep = Cp

2
((sw1, w1) + (Aw2, w2)) + m(w1, w2) + (Ãw2, w1).

Choose Cp large enough such that Cp > C9/δ, and

Ep � 3Cp

4
((sw1, w1) + (Aw2, w2)) � 3Cp

4
max(‖s‖∞, m + NL2)‖(w1, w2)‖2

2.

On the other hand,

Ep � Cp

4
((sw1, w1) + (Aw2, w2))

� min(s0, m)
Cp

4
‖(w1, w2)‖2

2. (2.44)

Then, for some positive constant C10,

d

dt
Ep � −C10Ep + |f |2

(
L3

s0
+

CpL3

12δ

)
. (2.45)

The uniform bound on ‖(u, ut )‖2 follows from (2.45). Moreover, the fact that C10 is
independent of initial data implies the absorbing ball property of (u, ut ) in L2 (i.e. the limsup
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as t → ∞ is bounded, independent of initial data). Equation (2.4) and the L2 invertibility of
the operator A imply a similar uniform bound on utt . Equation (2.1) in turn shows that ‖p‖H 2

is uniformly bounded and has the absorbing ball property as well.
Now, we proceed with the gradient estimate of (w1, w2). The symmetric inequality is

just (2.34) but with C2 now uniform in time. The skew symmetric inequality is obtained by
multiplying mw2,x with (2.12) plus w1,x times (2.13), and integrating over x ∈ [0, L]:
d

dt
[m(w1,x, w2,x)] − N

(
w1,x,

d

dt

∫ x

0
w2(x

′, t) dx ′
)

�
(

w1,x,

∫ x

0
εsw2

)
− (rw2,x, w1,x) − (s ′w1, w1,x) − s0‖w1,x‖2

2

+f (t)(1, w1,x) + 2C6(|w1,x |, |w2,x |) + C11(|w2|, |w1,x |). (2.46)

The second term on the left-hand side is

N(w1, w2,t ) = N
d

dt
(w1, w2) − N‖w2‖2

2.

It follows that
d

dt
[m(w1,x, w2,x) + N(w1, w2)] � 4C6‖w1,x‖2‖w2,x‖2 − s0

2
‖w1,x‖2

2 + C12, (2.47)

for a positive constant C12; or,

d

dt
[m(w1,x, w2,x) + N(w1, w2)] � 16C2

6

s0
‖w2,x‖2

2 − s0

4
‖w1,x‖2

2 + C12. (2.48)

Multiplying (2.34) by a constant C ′
p > 0 with C2 constant, and adding the resulting inequality

to (2.48), we get

d

dt
E′

p � − s0

4
‖w1,x‖2

2 + C13 −
(

C ′
pra(0)

2
− 16C2

6

s0

)
‖w2,x‖2

2, (2.49)

where

E′
p = C ′

p

2
((sw1,x, w1,x) + N‖w2‖2

2 + m‖w2,x‖2
2) + m(w1,x, w2,x) + N(w1, w2),

and C13 = C2C
′
p + C12. The term (w1, w2) is bounded from above by a constant times

‖(w1,x, w2,x)‖2
2 due to the Poincaré inequality and so we can choose

C ′
p >

32C2
6

s0ra(0)
,

large enough so that for some positive constants C14, C ′
14:

C ′
14‖(w1,x, w2,x)‖2

2 � E′
p � C14‖(w1,x, w2,x)‖2

2. (2.50)

Inequality (2.49) yields
d

dt
E′

p � −C15E
′
p + C13, (2.51)

implying the uniform estimate on ‖(ux, ut,x)‖2 and the absorbing ball property. The uniform
estimate and absorbing ball property on ‖p‖H 3 follows from (2.4) and (2.1). The proof is
complete.

Remark 2.1. The estimates in theorem 2.3 imply that the evolution map denoted by S(t) is
relatively compact in the space (u, ut ) ∈ (L2([0, L]))2. Hence, for any bounded initial data
(u, ut )(0) ∈ (H 1([0, L]))2, the dynamics (u, ut ) approach, in the space (L2([0, L]))2, the
universal attractor A defined as

A =
⋂
t>0

S(t)Bρ0 ,
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where Bρ0 denotes the ball of radius ρ0 in (H 1([0, L]))2, the absorbing ball given by the
estimates of theorem 2.3.

3. Multi-tone solutions

In this section, we consider special solutions to (1.1)–(1.2) that exhibit explicitly their frequency
contents. For simplicity, let us assume that εs(x) = 0, and s(x) � s0 > 0, ∀ x ∈ [0, L].

3.1. Linear waves

First, we consider the linear regime with r = r0, a positive constant. Solutions are
superpositions of single frequency time harmonic waves of the form p = P(x) eiωt + c.c.,
u = U(x) eiωt + c.c., where P and U are complex functions that satisfy

P = (−mω2 + ir0ω + s(x))U, (3.1)

Pxx + Nω2U = 0, (3.2)

Px(0) = Pin, P (L) = 0. (3.3)

Let

(α + iβ)(x) = Nω2

−mω2 + ir0ω + s(x)
,

where both α and β are real; so,

(α, β) = Nω2(−mω2 + s(x), −r0ω)

(−mω2 + s(x))2 + r2
0 ω2

. (3.4)

Then, (3.1)–(3.3) is equivalent to

Pxx + (α(x) + iβ(x))P = 0, (3.5)

subject to (3.3). If ω 	= 0, β 	= 0. We show the following lemma.

Lemma 3.1. The boundary value problem, (3.5) and (3.3), has a unique solution for all ω

such that ‖P ‖H 2([0,L]) � C|Pin|, for some constant C independent of ω.

Proof. Write P = Pin(x − L) + Q; then, Q satisfies

Qxx + (α(x) + iβ(x))Q = −(α(x) + iβ(x))(x − L)Pin ≡ (f1 + if2)(x), (3.6)

with boundary conditions Qx(0) = 0, Q(L) = 0. The left-hand side is a Fredholm operator
on Q, so it is sufficient to prove that zero is not an eigenvalue, which follows from the estimate
below. Write Q = q1 + iq2, then,(

q1

q2

)
xx

+

(
α −β

β α

) (
q1

q2

)
=

(
f1

f2

)
. (3.7)

Multiplying (3.7) by (q2, −q1), we find

q1,xxq2 − q1q2,xx − βq2
2 − βq2

1 = f1q2 − f2q1,

which gives upon integrating over x ∈ [0, L] and integrating by parts

−
∫ L

0
β(q2

1 + q2
2 ) dx =

∫ L

0
(f1q2 − f2q1) dx. (3.8)
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Multiplying (3.7) by (q1, q2), integrating over x ∈ [0, L], we have after integration by parts

−‖(q1,x, q2,x)‖2
2 +

∫ L

0
α(q2

1 + q2
2 ) =

∫ L

0
(f1q1 + f2q2). (3.9)

It follows from (3.9) and the Poincaré inequality that

‖(q1, q2)‖2
2 � L2‖(q1,x, q2,x)‖2

2

� L2‖α‖∞‖(q1, q2)‖2
2 + L2‖(f1, f2)‖2‖(q1, q2)‖2. (3.10)

For |ω| � ω0 
 1, ‖α‖∞ � 2Nω2/s0, 2ω2L2N/s0 � 1
2 ,

‖(q1, q2)‖2 � 2L2‖(f1, f2)‖2. (3.11)

As ‖(f1, f2)‖2 = O(ω2), (3.11) implies ‖(q1, q2)‖2 = O(ω2) for ω 
 1. For ω2 � M =
M(N, m, s, r0), M large enough, α ∼ −N/m, (3.9) shows

‖(q1, q2)‖2 � 2m

N
‖(f1, f2)‖2. (3.12)

When ω2
0 � ω2 � M , |β| is bounded from below uniformly in ω:

|β| � Nr0|ω|3
‖−mω2 + s(x)‖2∞ + r2

0 ω2
� β0,

for some positive constant β0 only depending on r0, m, L, and s(x). Inequality (3.8) gives

‖(q1, q2)‖2 � β−1
0 ‖(f1, f2)‖2 = β−1

0 C1(N, m, r0, L, s)|Pin|, (3.13)

for a positive constant C1(N, m, r0, L, s), uniformly in ω2 ∈ [ω2
0, M]. Combining

(3.11)–(3.13), we see that for any ω, and any given Pin, there is a unique solution P ,
‖P ‖2 � C2|Pin|, for constant C2 independent of ω. The lemma is proved by applying the
L2 estimate and the P equation (3.5).

3.2. Nonlinear waves

We are interested in the persistence of multi-tone solutions when nonlinearities are present. For
simplicity, we shall consider: (A1) ra > 0, a constant, and P(u) = u2, the overall nonlinearity
is cubic. As for linear waves, assume that (A2) εs = 0, s(x) � s0 > 0, s ∈ C1([0, L]). We
prove the following theorem.

Theorem 3.1 (existence and uniqueness of multi-tone solutions). Let the left boundary
condition be

fin(t) =
∑

j=1,...,m

aj exp{iωj t} + c.c.,

and fix ρ � 1. Then, under (A1)–(A2) and for γ small enough (independent of ρ), system
(1.1)–(1.2) has a unique solution of the form:

u(x, t) =
∑
k∈Zm

Uk(x) exp{ik · ωt} + c.c., (3.14)

where ω = (ω1, ω2, . . . , ωm), and complex valued functions Uk(x) ∈ H 1([0, L]), such that

‖u‖ ≡
∑

k

ρ|k|‖Uk‖H 1 < ∞. (3.15)

The pressure p is similar.



Nonlinear nonlocal cochlear models 723

Proof. Let B be the Banach space consisting of space–time functions of the form (3.14)
with norm (3.15). Let B1 = {v ∈ B : vt ∈ B}, a subspace of B. Consider the mapping
M : v ∈ B1 → u defined as the unique bounded solution of the following equation in B1:

mutt +
∫ L

x

dx ′
∫ x ′

0
dx ′′Nutt + fin(t)(L − x) + raut + s(x)u = −γ rnl(x, v2)vt , (3.16)

where γ rnl is the nonlinear nonlocal part of the damping function.
Let us show that M is a well-defined bounded mapping from B1 to itself. First, we notice

that for any functions ui ∈ B, i = 1, 2:

u1 · u2 =
∑

k1∈Zm

u1,k1 eik1·ωt
∑

k2∈Zm

u2,k2 eik2·ωt

=
∑
j∈Zm


 ∑

k1+k2=j

u1,k1u2,k2


 eij ·ωt .

So

‖u1u2‖ =
∑
j∈Zm

ρ|j |
∥∥∥∥∥

∑
k1+k2=j

uk1uk2

∥∥∥∥∥
H 1

�
∑

k1,k2∈Zm

ρ|k1|+|k2|‖uk1uk2‖H 1

=
∑

k1∈Zm

ρ|k1|‖uk1‖H 1

∑
k2∈Zm

ρ|k2|‖uk2‖H 1 = ‖u1‖‖u2‖. (3.17)

It follows that

‖rnl(x, v2)vt‖ � C‖v2 ∗ K‖‖vt‖ � C ′‖v2‖‖vt‖ = C ′‖v‖2‖vt‖, (3.18)

where C ′ depends on the kernel function K and ∗ denotes the convolution integral on
[0, L]. Denoting F(x, t) = −γ rnl(x, v2)vt ∈ B, we show that u ∈ B1. Write F(x, t) =∑

k∈Zm Fk eik·ωt + c.c., then (3.16) is the same as the system

pxx − Nutt = 0,

p = mutt + raut + s(x)u + F,
(3.19)

with boundary condition px(0, t) = fin(t), p(L, t) = 0. We seek a solution of system (3.19)
in the form

p =
∑
k∈Zm

pkeik·ωt + c.c.,

u =
∑
k∈Zm

uk eik·ωt + c.c.,

resulting in (k = (k1, k2, . . . , km)):

pk = (−m(k · ω)2 + ira(k · ω) + s(x))uk + Fk,

pk,xx + N(k · ω)2uk = 0,
(3.20)

with boundary condition pk(L) = 0, pk,x(0) = 0 if k is not one of the m modes (along ej ,
j = 1, 2, . . . , m) of fin; otherwise pk,x(0) = aj , if k = ej .

For each k, the system (3.20) can be uniquely solved as in lemma 4.1, with the estimates

‖pk‖H 1 � C1‖Fk‖2 + C2‖fin,k‖2,

‖uk‖H 1 � C3‖pk‖H 1

(1 + |k · ω|) .
(3.21)

It follows that the mapping M is from B1 to itself, and it is not difficult to check that M is a
contraction mapping if γ is small enough. This completes the proof.
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4. Numerical results

The model system is computed with a second-order semi-implicit finite difference method;
we refer to [23] for details and choice of the coefficient functions in the model other than
P(u) = u2. The input at the left boundary x = 0 is the sum of two tones (sinusoids) at
frequencies f1 = 3.5 kHz (kiloHertz) and f2 = 4 kHz, with amplitudes 80 dB (decibel) and
85 dB, respectively. The zero decibel is 20 µ Pa in physical units. The time step is 0.01 ms
(millisecond) and the spatial grid is 0.01 cm. The computation ends at 20 ms when the BM
responses reach a steadily oscillating state. To observe the frequency content of such a state, we
select four points (xj s, j = 1, 2, 3, 4) on BM, and examine the response time series (u(xj , t))
at these points from 5 ms to 20 ms (to omit initial transient effects). The power spectral density
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Figure 1. Time series of BM displacement at x = 1.93 cm (top frame), and its FFT power spectral
density versus frequency (bottom frame).
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of u(xj , t) at each j is obtained using the signal processing tool (sptool) in Matlab, to illustrate
the energy distribution across frequencies on a log-scale.

Figure (1) (top frame) shows the time series of BM displacement at x = 1.93 cm; the
bottom frame is the log–log plot of FFT power spectral density versus frequency. We see the
major peak at 3.5 kHz, as x = 1.93 cm is the (so-called characteristic) location for the peak of
a single 3.5 kHz tone. A characteristic location for a tonal input refers to the BM location of
the maximal peak response at steady state. In addition, we see two small side peaks at 3 kHz
(= 2f1 − f2), and 4 kHz (f2). In figure 2, at x = 1.85 cm, the characteristic location for f2,
the f2 peak is more pronounced; however, the f1 peak is still the highest. Such a response of
the lower frequency tone f1 to a higher frequency tone f2 is called upward masking in hearing.
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Figure 2. Time series of BM displacement at x = 1.85 cm (top frame), and its FFT power spectral
density versus frequency (bottom frame).
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Figure 3. Time series of BM displacement at x = 2.03 cm (top frame), and its FFT power spectral
density versus frequency (bottom frame).

In addition, there are two small side peaks at 3.0 kHz (= 2f1 − f2) and 4.5 kHz (= 2f2 − f1).
In figure 3, at x = 2.03, the characteristic location for 3 kHz, a dominant single peak due to the
generated combination tone 2f1 − f2 is observed. In contrast, the 2f2 − f1 tone ( = 4.5 kHz)
is weaker and dominated by f1 and f2 even at its characteristic location x = 1.69 cm (see
figure (4)). The above findings on combination tones are consistent with the experiments on
cochlea [19] and the analytic structures of multi-tone solutions in the previous section.

5. Conclusions

The nonlinear nonlocal cochlear models of the transmission line type are well-posed globally
in time and admit exact multi-frequency solutions in the weakly cubic nonlinear regime. For
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Figure 4. Time series of BM displacement at x = 1.69 cm (top frame), and its FFT power spectral
density versus frequency (bottom frame).

finitely many tonal inputs at distinct frequencies, the exact solutions contain all integral linear
combinations of input frequencies. For a two tone input with frequencies f1 and f2 at high
enough intensities, we observed numerically the combination tones 2f1 − f2 and 2f2 − f1 in
model output, in agreement with existing experimental observations [19] and the structure of
analytical solutions.
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in progress. He also thanks H Berestycki, P Constantin, G Papanicolaou, and J-M Roquejoffre
for their interest.



728 J Xin and Y Qi

Part of the work was done while YQ was an ICES (Institute of Computational Engineering
and Sciences) visiting fellow at the University of Texas at Austin. The ICES research fellowship
is gratefully acknowledged.

References

[1] Allen J B 1980 Cochlear modeling—1980 Lecture Notes in Biomathematics vol 43, ed M Holmes and
L Rubenfeld (Berlin: Springer) pp 1–8

[2] Beyer R T 1998 Sounds of Our Times: Two Hundred Years of Acoustics (New York: AIP)
[3] de Boer E 1996 Mechanics of the cochlea: modeling efforts Springer Handbook of Auditory Research vol 8,

ed P Dollas et al (Berlin: Springer) pp 258–317
[4] Deng L 1992 Processing of acoustic signals in a cochlear model incorporating laterally coupled suppresive

elements Neural Networks 5 19–34
[5] Deng L and Geisler C D 1987 Responses of auditory-nerve fibers to multiple-tone complexes J. Acoust. Soc.

Am. 82 1989–2000
[6] Geisler C D 1998 From Sound to Synapse (Oxford: Oxford University Press)
[7] Guinan J J and Peake W T 1967 Middle-ear characteristics of anesthesized cats J. Acoust. Soc. Am. 41 1237–61
[8] Hall J L 1977 Two-tone suppression in a nonlinear model of the basilar membrane J. Acoust. Soc. Am. 61 802–10
[9] Jau Y and Geisler C D 1983 Results from a cochlear model utilizing longitudinal coupling Mechanics of Hearing

ed E de Boer and M Viergever (Dordrecht: Martinus Nijhoff) pp 169–76
[10] Keller J B and Neu J C 1985 Asymptotic analysis of a viscous cochlear model J. Acoust. Soc. Am. 77 2107–10
[11] Kim D O 1986 An overview of nonlinear and active models Lecture Notes in Biomathematics: Peripheral

Auditory Mechanisms vol 64, ed J Allen et al (Berlin: Springer) pp 239–49
[12] Leveque R, Peskin Ch and Lax P 1988 Solution of a two-dimensional cochlear model with fluid viscosity SIAM

J. Appl. Math. 48 191–213
[13] Liberman M C 1982 The cochlear frequency map for the cat: labeling auditory nerve fibers of known characteristic

frequency J. Acoust. Soc. Am. 72 1441–9
[14] Lyon R 1982 A computational model of filtering, detection, and compression in the cochlear IEEE Int. Conf.

Acoustics, Speech and Signal Processing pp 1282–5
[15] Meddis R, O’Mard L, Lopez-Poveda E 2001 A computational algorithm for computing nonlinear auditory

frequency selectivity J. Acoust. Soc. Am. 109 2852–61
[16] Neely S 1985 Mathematical modeling of cochlear mechanics J. Acoust. Soc. Am. 78 345–52
[17] Osher S and Rudin L 1990 Feature-oriented image enhancement using shock filters SIAM J. Numer. Anal. 27

919–40
[18] Pohlmann K 2000 Principles of Digital Audio 4th edn (New York: McGraw-Hill Video/Audio Professional)
[19] Robles L and Ruggero M 2001 Mechanics of the mammalian cochlea Physiol. Rev. 81 1305–52
[20] Sondhi M 1980 The acoustical inverse problem for the cochlea Lecture Notes in Biomathematics vol 43,

ed M Holmes and L Rubenfeld (Berlin: Springer) pp 95–104
[21] Strube H W 1985 A computationally efficient basilar-membrane model Acustica 58 207–14
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