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Presented is a method of estimating the signal-to-noise (&tiR) of continuous utterances for
patients with various types of voice disorders that ranged in severity of dysphonia from mild to
severe. The SNR is estimated based on the residual that is left after systematically removing the
short- and long-term correlations that exist in the speech signal. Results indicate that the SNR is
consistent with human perceptual judgments, particularly those that consistently differentiate
close-to-normal versus highly disphonic voices. 1®99 Acoustical Society of America.
[S0001-49689)01604-5
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INTRODUCTION unpredictable, noise component. The decomposition of the
In current research and clinical practice, acoustic analy-SpeeCh signal into correlated and uncorrelated components is

ses of speech signals often rely on vowel phonations that ai%ccomplished t?y systematically .remov.ing existing correla-
sustained for several seconds. A number of methods hay#ns from the signal until the residual signal appears to be a
been developed to analyze a selected segments from suf@dom Gaussiafmormally distributegisequencéSchroeder
samples of sustained vowel phonation. These include pertuRnd Atal, 1985 This approach is similar to the statistical
bations of fundamental frequency and amplitude, andProcedures used in analysis of variance, where known vari-
harmonics-to-noise ratiéHorii, 1980: Yumotoet al, 1982; ables are successively factored out until the remaining varia-
Qi and Hillman, 1997 tions appear to be random with a normal distribution.
Sustained vowel phonation, however, is not necessarily ~According to the acoustic theory of speech production,
a valid representation of an individual’s vocal function dur-there are two known types of correlations present in a speech
ing continuous speech. For example, real running speech irsignal: a short-term correlation and a long-term correlation
volves constant and rapid adjustments of vocal mechanism&chroeder and Atal, 1985Short-term correlation refers to
(e.g., rapid initiation and termination of voicinthat are not the correlation/predictability of a signal on a sample-by-
present during sustained phonation of a vowel. Thus, isample basis. Such a correlation is primarily associated with
would be desirable, and potentially more valid, to obtainthe resonances of the vocal tract. For example, the pattern of
estimates from continuous speech of acoustic parameters thegcillation (resonance within each fundamental period is
are associated with abnormalities in voice quality. Towardpredictable, i.e., the magnitude of the current sample could
this goal, we here introduce a method for acoustically estipe predicted from the samples that immediately precede the
mating the signal-to-noise ratiGNR) of continuous utter-  cyrrent sample when the formants of vocal tract are known
ances, which we hope will be useful both for clinical a”d(Fant, 1981 This short-term predictability would be dis-

research_—related evaluations of vqice produc’;ion. Thi?upted by the glottal input for the next cycle and/or by any
method is evaluated by comparing its results with humansnqom variations.

perceptual evaluations. Long-term correlation refers to the correlation/

predictability of the signal based on samples that do not im-
mediately precede the current sample. Such a correlation is
In the analysis proposed here, speech signals are decomtimarily associated with the quasi-periodical nature of voice
posed into two components: a correlated/predictable compgeroduction(Ramachandran and Kabal, 198%or example,
nent (signa) and an uncorrelated/unpredictable componenthe signal characteristics around the beginning of each cycle
(noise. The SNR, thus, defines the strength of the correlateavould be predictable, to a certain extent, based on informa-
component of a speech signal relative to the uncorrelatedion from around the beginning of previous cycles. This pre-
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diction would be disrupted by the onset/offset of voicing

and/or by any random variations. xw Stort-Term LP | +(0) Long-Term LP | n)
The decomposition of speech signals into short- and Sienal inverse Fliering fverse Fitering | oise
long-term correlations plus Gaussian noise has been success T ai T Bi
fully applied in telecommunication systeniSchroeder and
Atal, 1989. In the code-excited linear predictiogfCELP) Short-Term LP Long-Term LP
Analysis Analysis

based speech coders of some cellular phone systems, for ex-
ample, only parameters related to the short- and long-term
correlations are transmitted. Speech signals are reconstructed!G. 1. Flow chart of the short- and long-term decorrelation process.
at the receiver by addin(filtering) random Gaussian noise

using the transmitted short- and long-term correlation coef-  During long-term decorrelation, linear prediction was
ficients. Although it is necessary to synthesize a randonmade based on samples that were not immediately preceding
noise in the receiver that has similar variance and temporahe current sample of the short-term decorrelated, residue
distribution as that in the transmitter, the unpredictable, noisgignal. The window length for minimizing prediction error
component of speech isot transmitted in the cellular sys- was 2.5 ms, which is long enough to include the pulselike
tem. The adequacy of decomposing speech signals intgeaks of short-term LP residual signals that often occur dur-
short- and long-term correlated components plus a noisgg voiced segments of speech. Because the exact location of
component is demonstrated by the fact that cellular phoneghe next residual peak varies somewhat from cycle to cycle,
provide adequate speech quality for normal communicationthe closest sample used for making prediction was between
A number of predictions could be made about the de-1 25 to 17.5 ms prior to the first sample to be predicted.
composition of speech signals. The residual signal, for exThus, this included the fundamental frequency range from
ample, should approximate a Gaussian process. This h&9-800 Hz in the predictive analysis. The LP filter that pro-
been well demonstrated in previous publicati¢Sshroeder duced the minimal prediction error over this sliding range
and Atal, 1983. In this work, the proposed SNR was evalu- was chosen as the final long-term LP filter. The order of the
ated by comparing it to human perceptual ratings of a relafilter was 3(Ramachandran and Kabal, 19890 remove the
tively large set of speech samples. long-term correlation, the short-term decorrelated residual
signal was inverse filtered by the long-term LP filter. Over-
lap save was used again to ensure continuity during filter
update. The output of this second stage of inverse filtering
Speech samples were recorded at the Voice and Speegfys considered to be the fin@lhort- and long-term decor-
Laboratory of Massachusetts Eye and Ear Infirmary. Eightyrelated noise component of the speech signal. A flow chart
seven subject$40 men and 47 womendiagnosed With &  of the short- and long-term decorrelation processes is shown
wide variety of laryngeal voice pathologies provided thej, Fig. 1. Example signals are shown in Fig. 2.
speech samples. Each subject was asked to read the Rainbow The final SNR was computed as the ratio of average rms
Passage at comfortable fundamental frequency and intensigmpiitude between the original signal and its corresponding
levels. Audio recordings were made using a condenser Mishort- and long-term decorrelated signal. This ratio was re-

crophone(Sennheisgrand a digital tape recordéfascom,  qgyced by one before converting it to dB scale because the
DA-30) in a sound treated booth. The microphone was suspriginal signal represents signal plus noise.

pended a constant distance of 15 cm from the lips of each
subject using a head-mounted device. All recordings were
low-pass filtered {;=7.5kHz) and redigitized into a com- C. Perceptual evaluations

puter at a sampling rate of 16 kHz and a 16-bit A/D resolu- The recorded voice samplé&7 in tota) were perceptu-

tion. The first two sentences of the Rainbow Passage WereIIy rated by the same group of listeners using two different

used for subsequent acoustic analysis and perceptual evalu- i : .
ation types of scales: a categorical scale and a continuous scale.

The two ratings were made about three months apart to mini-
mize any potential learning effects. Judges consisted of five
speech pathologists with normal hearifsgreened at 25 dB
Linear predictionLP) was used to determine both short- for speech frequencigsand extensive training and experi-
and long-term correlation@Markel and Gray, 1976; Ram- ence in the diagnosis and treatment of voice disorders. All
achandran and Kabal, 198%or short-term correlation, LP ratings were accomplished using an interactive graphical
analysis was made on a window-by-windawo overlap  user interface on a computer with stimuli presented over
basis. The LP filter was obtained using a Hamming windowheadphone. Stimuli consisted of the first two sentences of the
with window length of 20 ms. The order of the LP filter was Rainbow Passage.
14 (Markel and Gray, 1976 To remove short-term correla- In the categorical rating task, judges were asked to clas-
tion, the original signal was inverse filtered by the LP filter sify each voice sample &) normal, (2) mild, (3) mild-to-
using overlap save to ensure continuity during filter updatemoderate (4) moderate(5) moderate to sever€g) severe,
The residual signal of this LP inverse filtering was the short-or (7) aphonic. The judges were allowed to listen to each
term, decorrelated signal which was then further processedoice sample as many times as they wished before entering
for long-term decorrelation. their response. For assessing intrajudge reliability, each

A. Subjects and recordings

B. Acoustic analysis
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(middle), and short- and long-term decorrelated sigftmttom). The origi-
nal signal was recorded from a male talker saying the word “choice.” were computed for all ten judgmen(s judges<2 sessions
Results indicate that all correlations were significapt (
judge repeated the entire rating session twice for a different<0.001). Intrajudge correlations ranged from 0.93 to 0.96.
random ordering of stimulus presentation with a period of ainterjudge reliability was calculated using Cronbachis
least 24 h in between rating sessions. (Cronbach, 1970 This statistics entails measuring the cor-
In the continuous rating task, judges were asked to use eelation between each individual listener's mean rating for
number to describe the degree of perceived dysphonia rel@ach stimulus with the group mean of all the other listeners.
tive to a standard voice sample. The standard voice sampléronbach’'s « was 0.97, indicating adequate reliability
was assigned a number of 100. Voices perceived to havamong listeners in the continuous scaling task.
more dysphonia than the standard, for example, would be As shown, despite significantly high intra- and inter-
given a rating of more than 100, and voices with less dysjudge correlations, both categorical and continuous ratings
phonia, would be assigned a number less than 100. Rateextend(overlap over a relatively large range for most voice
were free to assign any value, as high or as low as thegamples. For example, a voice sample in the middle of the
considered necessary. They also had access to the referemmceptual scale could have a categorical rating ranging from
sample at all times, and were allowed to listen to each voicenild to severe or a continuous rating ranging from 25 to 75.
sample as many times as they wished before entering theirhis overlap, however, is minimal between samples that are
response. As was the case for the categorical task, intrajudgated as close-to-norméahormal and mild, 31 samplgand
reliability was assessed by repeating the entire rating sessidhose that are rated as highly disphofricoderate to severe,
(stimuli in different random orderon a different day. severe, and aphonic, 25 sample& histogram of the cat-
egorical scores for these two subgrou@d+25=57 total
sampleg is shown in Fig. 4. As expected, the judges ap-
peared inconsistent when viewing their performance across
The categorical ratings and their medians are shown itthe entire set of voice samples, but they were able to differ-
Fig. 3 (top) for each voice sample. Spearman correlationsentiate between close-to-normal and highly disphonic voice
were computed for all ten judgmen(s judges<2 sessions  samples quite well.
Results indicated that all correlations were significapt ( The median categorical ratings and mean continuous rat-
<0.001). Intrajudge correlations ranged from 0.87 to 0.93ngs are shown in Fig. 5 as a function of the computed SNRs
and interjudge correlations ranged from 0.82 to 0.91. for all subjects. The Spearman correlation between the cat-
The continuous ratings and their means are shown imgorical ratings and SNRs £ —0.76, p<0.001) and the
Fig. 3 (bottom for each voice sample. Here, all scores werePearson correlation between the continuous ratings and
normalized to the range of 0—100 based on the maximun$NRs ¢=—0.78, p<<0.001) are both statistically signifi-
and minimum scores of a rating session. Pearson correlatiomsint, but relatively low in terms of the amount of variation

II. RESULTS AND CONCLUSIONS
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FIG. 4. Histogram for voice samples whose perceptual ratings fell in eithelFIG. 6. Histogram of SNR values for voice samples whose perceptual rat-
the close-to-normal or highly disphonic range. ings are either in the close-to-normal or highly disphonic range.

undertaken here merely provide some preliminary support
actually accounted forrf<0.61). By way of comparison, for the proposed SNR measurement. Further experiments are
the SNRs for samples that are rated as close-to-normal gfecessary to more rigorously establish the relationship be-
highly disphonic are shown in Fig. 6. There is a clear sepatween SNR and specific aspects of pathological voice/speech
ration (54/57=95%) in SNR between these two groups, in- production/perception. To date, comprehensive understand-
dicating that the computed SNRs are in agreement with théhg and agreement on methods for evaluating pathological
perceptual ratings when the ratings are made consistently. voice production/perception is lacking. The SNR measure-
These results seem to indicate that the proposed SNRpent described here is developed largely based on estima-
similar to the harmonics-to-noise ratio for vowels, has ations of short- and long-term correlations that have been suc-
moderate degree of correlation with perceptual ratings of hucessfully applied to modern telecommunication systems. It
man listenergYumotoet al, 1982. Obviously, experiments represents a first attempt to directly quantify acoustic prop-
erties of continuous utterance for disordered voices. It is our
hope that the proposed SNR measure could be developed

i oo ot male into a useful tool for clinical and research-related voice as-
o ox @ o oo « female | sessment.
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