Automatic Speech Recognition
Automatic speech recognition

• What is the task?
• What are the main difficulties?
• How is it approached?
• How good is it?
• How much better could it be?
What is the task?

• Getting a computer to understand spoken language
• By “understand” we might mean
 – React appropriately
 – Convert the input speech into another medium, e.g. text
• Several variables impinge on this (see later)
How do humans do it?

- Articulation produces sound waves which the ear conveys to the brain for processing.
How might computers do it?

- Digitization
- Acoustic analysis of the speech signal
- Linguistic interpretation

Speech recognition
What’s hard about that?

• Digitization
 – Converting analogue signal into digital representation
• Signal processing
 – Separating speech from background noise
• Phonetics
 – Variability in human speech
• Phonology
 – Recognizing individual sound distinctions (similar phonemes)
• Lexicology and syntax
 – Disambiguating homophones
 – Features of continuous speech
• Syntax and pragmatics
 – Interpreting prosodic features
• Pragmatics
 – Filtering of performance errors (disfluencies)
Digitization

- Analogue to digital conversion
- Sampling and quantizing
- Use filters to measure energy levels for various points on the frequency spectrum
- Knowing the relative importance of different frequency bands (for speech) makes this process more efficient
- E.g. high frequency sounds are less informative, so can be sampled using a broader bandwidth (log scale)
Separating speech from background noise

• Noise cancelling microphones
 – Two mics, one facing speaker, the other facing away
 – Ambient noise is roughly same for both mics

• Knowing which bits of the signal relate to speech
 – Spectrograph analysis
Variability in individuals’ speech

• Variation among speakers due to
 – Vocal range (f0, and pitch range – see later)
 – Voice quality (growl, whisper, physiological elements such as nasality, adenoidality, etc)
 – ACCENT !!! (especially vowel systems, but also consonants, allophones, etc.)

• Variation within speakers due to
 – Health, emotional state
 – Ambient conditions

• Speech style: formal read vs spontaneous
Speaker-(in)dependent systems

- **Speaker-dependent systems**
 - Require “training” to “teach” the system your individual idiosyncracies
 - The more the merrier, but typically nowadays 5 or 10 minutes is enough
 - User asked to pronounce some key words which allow computer to infer details of the user’s accent and voice
 - Fortunately, languages are generally systematic
 - More robust
 - But less convenient
 - And obviously less portable
- **Speaker-independent systems**
 - Language coverage is reduced to compensate need to be flexible in phoneme identification
 - Clever compromise is to learn on the fly
Identifying phonemes

• Differences between some phonemes are sometimes very small
 – May be reflected in speech signal (eg vowels have more or less distinctive f1 and f2)
 – Often show up in coarticulation effects (transition to next sound)
 • e.g. aspiration of voiceless stops in English
 – Allophonic variation
Disambiguating homophones

• Mostly differences are recognised by humans by context and need to make sense

 It’s hard to wreck a nice beach

 What dime’s a neck’s drain to stop port?

• Systems can only recognize words that are in their lexicon, so limiting the lexicon is an obvious ploy

• Some ASR systems include a grammar which can help disambiguation
(Dis)continuous speech

• Discontinuous speech much easier to recognize
 – Single words tend to be pronounced more clearly

• Continuous speech involves contextual coarticulation effects
 – Weak forms
 – Assimilation
 – Contractions
Interpreting prosodic features

• Pitch, length and loudness are used to indicate “stress”

• All of these are relative
 – On a speaker-by-speaker basis
 – And in relation to context

• Pitch and length are phonemic in some languages
Pitch

• Pitch contour can be extracted from speech signal
 – But pitch differences are relative
 – One man’s high is another (wo)man’s low
 – Pitch range is variable

• Pitch contributes to intonation
 – But has other functions in tone languages

• Intonation can convey meaning
Length

• Length is easy to measure but difficult to interpret
• Again, length is relative
• It is phonemic in many languages
• Speech rate is not constant – slows down at the end of a sentence
Loudness

• Loudness is easy to measure but difficult to interpret
• Again, loudness is relative
Performance errors

- Performance “errors” include
 - Non-speech sounds
 - Hesitations
 - False starts, repetitions
- Filtering implies handling at syntactic level or above
- Some disfluencies are deliberate and have pragmatic effect – this is not something we can handle in the near future
Approaches to ASR

• Template matching
• Knowledge-based (or rule-based) approach
• Statistical approach:
 – Noisy channel model + machine learning
Template-based approach

- Store examples of units (words, phonemes), then find the example that most closely fits the input
- Extract features from speech signal, then it’s “just” a complex similarity matching problem, using solutions developed for all sorts of applications
- OK for discrete utterances, and a single user
Template-based approach

• Hard to distinguish very similar templates
• And quickly degrades when input differs from templates
• Therefore needs techniques to mitigate this degradation:
 – More subtle matching techniques
 – Multiple templates which are aggregated
• Taken together, these suggested …
Rule-based approach

- Use knowledge of phonetics and linguistics to guide search process
- Templates are replaced by rules expressing everything (anything) that might help to decode:
 - Phonetics, phonology, phonotactics
 - Syntax
 - Pragmatics
Rule-based approach

• Typical approach is based on “blackboard” architecture:
 – At each decision point, lay out the possibilities
 – Apply rules to determine which sequences are permitted

• Poor performance due to
 – Difficulty to express rules
 – Difficulty to make rules interact
 – Difficulty to know how to improve the system
• Identify individual phonemes
• Identify words
• Identify sentence structure and/or meaning
• Interpret prosodic features (pitch, loudness, length)
Statistics-based approach

- Can be seen as extension of template-based approach, using more powerful mathematical and statistical tools
- Sometimes seen as “anti-linguistic” approach
 - Fred Jelinek (IBM, 1988): “Every time I fire a linguist my system improves”
Statistics-based approach

• Collect a large corpus of transcribed speech recordings
• Train the computer to learn the correspondences (“machine learning”)
• At run time, apply statistical processes to search through the space of all possible solutions, and pick the statistically most likely one
Machine learning

• Acoustic and Lexical Models
 – Analyse training data in terms of relevant features
 – Learn from large amount of data different possibilities
 • different phone sequences for a given word
 • different combinations of elements of the speech signal for a given phone/phoneme
 – Combine these into a Hidden Markov Model expressing the probabilities
HMMs for some words

- Word model for "the"
 - Start to dh: 0.92
 - dh to ax: 0.77
 - ax to iy: 0.88
 - iy to n: 0.08

- Word model for "on"
 - Start to aa: 1.0
 - aa to n: 0.8

- Word model for "need"
 - Start to n: 1.0
 - n to iy: 0.88
 - iy to d: 0.12
 - d to end: 1.0

- Word model for "I"
 - Start to ay: 0.8
 - ay to aa: 0.2
 - aa to end: 1.0
Language model

• Models likelihood of word given previous word(s)

• n-gram models:
 – Build the model by calculating bigram or trigram probabilities from text training corpus
 – Smoothing issues
The Noisy Channel Model

- Search through space of all possible sentences
- Pick the one that is most probable given the waveform
The Noisy Channel Model

- Use the acoustic model to give a set of likely phone sequences
- Use the lexical and language models to judge which of these are likely to result in probable word sequences
- The trick is having sophisticated algorithms to juggle the statistics
- A bit like the rule-based approach except that it is all learned automatically from data
Evaluation

• Funders have been very keen on competitive quantitative evaluation
• Subjective evaluations are informative, but not cost-effective
• For transcription tasks, word-error rate is popular (though can be misleading: all words are not equally important)
• For task-based dialogues, other measures of understanding are needed
Comparing ASR systems

• Factors include
 – Speaking mode: isolated words vs continuous speech
 – Speaking style: read vs spontaneous
 – “Enrollment”: speaker (in)dependent
 – Vocabulary size (small <20 … large > 20,000)
 – Equipment: good quality noise-cancelling mic … telephone
 – Size of training set (if appropriate) or rule set
 – Recognition method
Remaining problems

• **Robustness** – graceful degradation, not catastrophic failure
• **Portability** – independence of computing platform
• **Adaptability** – to changing conditions (different mic, background noise, new speaker, new task domain, new language even)
• **Language Modelling** – is there a role for linguistics in improving the language models?
• **Confidence Measures** – better methods to evaluate the absolute correctness of hypotheses.
• **Out-of-Vocabulary (OOV) Words** – Systems must have some method of detecting OOV words, and dealing with them in a sensible way.
• **Spontaneous Speech** – disfluencies (filled pauses, false starts, hesitations, ungrammatical constructions etc) remain a problem.
• **Prosody** – Stress, intonation, and rhythm convey important information for word recognition and the user's intentions (e.g., sarcasm, anger)
• **Accent, dialect and mixed language** – non-native speech is a huge problem, especially where code-switching is commonplace