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A Many to One Discrete Auditory Transform
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Abstract

A many to one discrete auditory transform is presented to map
a sound signal to a perceptually meaningful spectrum on the scale
of human auditory filter band widths (critical bands). A generalized
inverse is constructed in closed analytical form, preserving the band
energy and band signal to noise ratio of the input sound signal. The
forward and inverse transforms can be implemented in real time. Ex-
periments on speech and music segments show that the inversion gives
a perceptually equivalent though mathematically different sound from
the input.
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1 Introduction

Short term discrete Fourier transform (DFT) is a common tool to map sound
signals from time domain to spectral domain for analysis and synthesis [1].
However, the spectral resolution of DFT over a standard short time window of
5 to 15 milleseconds (ms) in duration is much more refined than the resolution
of human auditory filters that have band widths referred to as critical bands
[4, 12]. Critical bands are nearly uniform in widths similar to DFT for
frequencies under 500 Hz, yet the widths increase rapidly towards higher
frequencies. The nonuniform frequency resolution of the ear resembles that
of wavelets [2, 9], though critical band widths do not follow a simple power
law, and auditory filter shapes may not obey the requirements of the wavelet
basis functions. An orthogonal discrete transform with broader and smoother
spectrum towards higher frequencies than that of DFT is recently constructed
[11] to mimic the auditory filtering. Due to the limitation of orthogonality,
the variation of the spectrum does not match the scale of critical bands. In
addition, the spectrum of the transform does not carry enough perceptual
meaning and so makes it inconvenient to perform psychoacoustically based
spectral analysis and processing.

In this paper, we present a novel many-to-one discrete auditory transform
(MDAT) that maps sound signals from the time domain to a perceptually
meaningful spectral domain on the scale of critical bands. The many-to-
one mapping is consistent with the fact that physically and mathematically
different signals can sound the same to human ears [4, 8, 12]. The frequency
resolution for the perception of sound in our brain is much lower than that
is required to fully describe a signal mathematically [8]. The perception
variables of MDAT are band energies and band signal to noise ratios (SNRs),
motivated by perceptual coding in AAC and MP3 technology of digital music
compression [5, 6]. The SNRs depend on two neighboring frames of a signal
and so MDAT spectrum also encodes temporal information, different from
DFT. As a test of the efficiency of these variables, and for the synthesis of
sounds post spectral processing, we show how to construct an inverse which
is perceptually equivalent to the input sound though mathematically not
identical. Both the forward and inverse operations are in closed analytical
form, and allow real time implementation of the resulting algorithms.

Compared with DFT (implemented by FFT), MDAT has better temporal
resolution due to its lower spectral resolution in higher frequencies. In terms
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of the 256 point FFT used in this paper, the number of frequency bands of
MDAT is in the 40’s (see Tables 1 and 2 for signals with different sampling
frequencies) while DFT has 128 frequency components. Compared to time
domain filter bank with a relatively small number of band pass filters (4 to 16
channels) as in body-worn hearing devices [3], MDAT has better frequency
resolution yet does not have the delays encountered when a larger number of
frequency separating band pass filters are needed. Hence MDAT is expected
to be a useful tool in applications where a spectral processing strategy is
necessary on the critical band scale, and a trade-off of spectral accuracy and
temporal precision is to be optimized.

The paper is organized as follows. In section 2, the MDAT is formu-
lated and the associated perceptual variables are defined. Then an inverse is
constructed in closed analytical form based on band energies and SNRs. In
section 3, MDAT is applied to speech (sampled at 16 kHz) and music (sam-
pled at 44.1 kHz) signals, and properties of perceptual spectral variables are
illustrated. The reconstructed signals are compared with the input signals
both spectrally and in waveforms, and these signals can be heard at author’s
website [10]. Section 4 contains discussion and conclusion.

2 MDAT and a Perceptual Inversion

Let s = (s0, · · · , sN−1) be a discrete real signal, the discrete Fourier transform
(DFT) is [1]:

ŝk =

N−1
∑

n=0

sn e
−i(2πnk/N). (2.1)

The DFT is implemented by the fast Fourier transform (FFT) algorithm, we
shall refer to the k = 0 component of DFT as DC (direct current) and the
other components as AC (alternating current) for short.

Let us further map the ŝk’s to a spectral domain of lower resolution
where perception variables can be better defined. Such a spectral domain is
obtained from binning the DFT components into bands of various widths,
similar to the critical band width distribution of human auditory filters. The
detailed partition of DFT components, the band widths, and psychoacoustic
bark values of the bands are listed in Table 1 and Table 2. Table 1 is at
sampling frequency Fs = 16 kHz for speech sounds, and Table 2 is at Fs =
44.1 kHz for music sounds. Let b = 1, 2, · · · , J , denote the number of bands,
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and let B(b) denote the DFT wave numbers k in the b-th band. In case of
Table 1, N/J ≈ 5.56; and in Table 2, N/J ≈ 6.24.

The signal energy in the b-th band is:

e(b) =
∑

k∈B(b)

|ŝk|2. (2.2)

Let snrb be the signal to noise ratio (SNR) in the b-th band, the perception
domain consists of nonnegative 2J-dimensional vectors whose components
are band energies and band SNRs:

Vperc = {(e(1), snr1, e(2), snr2, · · · , e(J), snrJ)}. (2.3)

The snrb are calculated following the AAC coding [5], an improvement of
MP3 coding [6]. Let r(k, t) and f(k, t) be the amplitude and phase of ŝ(k)
at time frame t denoted by ŝ(k, t). The predicted amplitude and phase at
time frame t are:

rpred(k, t) = r(k, t− 1) + ∆r, ∆r ≡ r(k, t− 1) − r(k, t− 2),

fpred(k, t) = f(k, t− 1) + ∆f, ∆f ≡ f(k, t− 1) − f(k, t− 2). (2.4)

The unpredictability measure of the signal, a quantity for measuring the
noisy (uncertain) part of signal, is:

c(k, t) =
abs(ŝ(k, t) − ŝpred(k, t))

abs(ŝ(k, t)) + abs(ŝpred(k, t))
, (2.5)

where ŝpred(k, t) = rpred(t) e
ifpred(t). It is clear that c(k, t) ∈ [0, 1]. Note

that c(k, t) encodes the time domain information of the signal s, which is
not available in DFT. As a result, the perceptual variables (2.3) has both
spectral and temporal information of the input signal. We shall omit the t
dependence from now on, as all subsequent operations will not explicitly use
t.

The weighted unpredictability measure is:

ec(b) =
∑

k∈B(b)

r2(k) c(k). (2.6)
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Next, convolve e(b) and ec(b) with spreading functions [8] on the bark scale
[4] as:

ecb(b) =
J

∑

b′=1

e(b′) spread (bark (b′), bark (b)), (2.7)

ct(b) =
J

∑

b′=1

ec(b′) spread (bark (b′), bark (b)), (2.8)

where bark(b) is the bark value of the b-th partition (band). The bark
scale [4] is nearly uniform on the logarithmic frequency scale. The spreading
functions [8] carry the shape information of human auditory filters.

Normalizing ct by energy ecb gives:

cb(b) = ct(b)/ecb(b), (2.9)

a noise to signal ratio, which in turn defines tonality index as:

tb(b) = −0.299 − 0.43 log(cb(b)), (2.10)

if the value is in (0, 1), otherwise equal to zero if the value is below zero, or
one if the value is above 1. Finally, the signal to noise ratio in decibel (dB)
is:

snrb = tb(b) TMN + (1 − tb(b)) NMT, (2.11)

where TMN = 18 dB (tone masking noise), NMT = 6 dB (noise masking
tone). The forward transform denoted by T from signal s to its image in the
perception domain Vperc is a many-to-one mapping. Clearly, T (−s) = Ts.

We notice that each snrb is a monotone function of cb(b) which in turn de-
pends on ec(b) and ct(b). So two other ways of characterizing the perception
domain are:

V (1)
perc = {(e(1), cb(1), e(2), cb(2), · · · , e(J), cb(J))}, (2.12)

V (2)
perc = {(e(1), ec(1), e(2), ec(2), · · · , e(J), ec(J))}. (2.13)

In other words, V
(1)
perc or V

(2)
perc is sufficient to describe the perception variables,

i.e. the band energies and band SNRs. Below we show how to reconstruct a
sound signal from V

(1)
perc or V

(2)
perc and obtain a perceptually equivalent inverse.
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The inversion from a subset of 2J dimensional space to the signal space
RN (N > 2J) is non-unique. The inversion is through reconstructing the
DFT vector ŝk. Let us write the reconstructed DFT vector as:

ab
k = wb

k e
1/2(b) eiϕb

k , k ∈ B(b), (2.14)

where the real weighting factors wb
k satisfy for all b:

∑

k∈B(b)

|wb
k|2 = 1, (2.15)

to preserve the band energy e(b). The real phase factors ϕb
k, and the DC

component of DFT are assumed to be known for the reconstruction of the
AC part of the DFT amplitude.

The second conserved quantity (constraint) is ec(b) in (2.6):

ec(b) =
∑

k∈B(b)

|wb
k|2 e(b) c(k) = e(b)

∑

k∈B(b)

|wb
k|2 c(k). (2.16)

Define:
< wb >2

c=
∑

k∈B(b)

|wb
k|2 c(k), (2.17)

which equals

< wb >2
c= ec(b)/e(b) ∈ ( min

k∈B(b)
c(k), max

k∈B(b)
c(k)) ⊂ [0, 1]. (2.18)

If the inversion is from V
(2)
perc, then the two spectral constraints (2.15) and

(2.17) are available to be imposed in each band containing at least two DFT

components. If the inversion is from V
(1)
perp, then < wb >2

c has to be recovered
from e(b) and cb(b). By (2.9), we have for each b ∈ [1, J ]:

cb(b) =

∑J
b′=1 e(b

′) < wb′ >2
c spread(bark(b′), bark(b))

∑J
b′=1 e(b

′) spread(bark(b′), bark(b))
, (2.19)

or

J
∑

b′=1

e(b′) < wb′ >2
c spread(bark(b′), bark(b))

= cb(b)

J
∑

b′=1

e(b′) spread(bark(b′), bark(b)). (2.20)
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Equation (2.20) can be recast as a matrix equation S~x = ~z, where S =
(spread(bark(b′), bark(b)) is a square matrix, ~x is the column vector with
entries e(b) < wb >2

c , ~z the right hand side column vector. The commonly
used spreading matrix S (based on e.g. Schroeder’s spreading functions [8])
does not have a nonnegative inverse. In order to find nonnegative solutions
in general, one may solve a quadratic programming problem from (2.19).
Define the matrix Q = (qij) with its entries:

qij =
e(j) spread(bark(j), bark(i))

∑J
j=1 e(j) spread(bark(j), bark(i))

.

The matrix Q is invertible. A column vector ~y = (< wb >2
c) is sought to

minimize the l2 norm ‖~cb − Q~y‖2 subject to the constraint yl(b) ≤ y(b) ≤
yu(b), yl(b) = mink∈B(b) c(k), yu(b) = maxk∈B(b) c(k).

In signal processing tasks that keep the band SNRs invariant as in hearing
aids gain prescriptions, the quadratic programming is not needed, directly
inverting S will suffice to find (< wb >2

c).

Next we solve for wb
k from the two equations (2.15) and (2.17), using

information of c(k), k ∈ B(b). Let Nb be the number of DFT components

in B(b), ~ρ = (|wb
k1
|2, |wb

k2
|2, · · · , |wb

kNb
|2)T , ~ψ = (c(k1), c(k2), · · · , c(kNb

))T ,

kj ∈ B(b), θb =< wb >2
c , ~e = (1, 1, · · · , 1)T ∈ RNb, T denoting transpose.

Equations (2.15) and (2.17) now read (dot refers to inner product):

~e · ~ρ = 1, (2.21)

~ψ · ~ρ = θb. (2.22)

If ~ψ is parallel to ~e, equation (2.22) is redundant with θb = c(1) by
definition and equation (2.21). This is true in particular if Nb = 1. The
simplest smooth solution to (2.21) is ~ρ = 1

Nb
~e.

If Nb ≥ 2 and ~ψ is not parallel to ~e, define vector:

~v = ~e− ~e · ~e
~e · ~ψ

~ψ 6= 0, (2.23)

clearly ~v · ~e = 0, and ~e · ~ψ > 0. Equations (2.21) and (2.22) imply that:

~v · ~ρ = 1 − ~e · ~e
~e · ~ψ

θb. (2.24)
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Equation (2.21) and equation (2.24) say that in the orthonormal basis
with ~e and ~v as two directions, the coordinates along ~e and ~v are constrained,
the other coordinates are free. The simplest two dimensional solution is ob-
tained by setting the free coordinates to zero (‖ ·‖2, l

2 norm or the Euclidean
distance):

~ρ =
1√
Nb

~e√
Nb

+
1

‖~v‖2
(1 − ~e · ~e

~e · ~ψ
θb)

~v

‖~v‖2
, (2.25)

which becomes upon substituting in (2.23):

~ρ =

[

1

Nb
+

1

‖~v‖2
2

(

1 − ~e · ~e
~e · ~ψ

θb

)]

~e− ~e · ~e
~e · ~ψ

1

‖~v‖2
2

(

1 − ~e · ~e
~e · ~ψ

θb

)

~ψ. (2.26)

The regularity of solution (2.25) or (2.26) is no worse than that of ~ψ which
is oscillatory in general. With the wb

k’s so determined, a time domain signal
is reconstructed by inverse DFT using the reconstructed ab

k, k ∈ B(b), b =
1, 2, · · · , J .

If Nb = 2, (2.26) is the unique solution. If Nb ≥ 3 (true if b is above
some critical number, see Table 1 and Table 2), there are infinitely many
solutions to (2.21)-(2.22). It is desirable to seek a smoother solution because
spectral smoothness improves temporal localization of the inverse transform.
One way to obtain a smoother solution over the frequency bands (Nb ≥ 3)
starting with FFT wave number k0 is to minimize the following quadratic
function:

f =
1

2

k0+M−1
∑

k=k0

(ρk+1 − ρk)
2, (2.27)

where M + 1 is the total number of DFT components in those bands B(b)
with Nb ≥ 3, subject to the two constraints (2.21)-(2.22) in each such band
B(b). Let ~u = (ρk0 , · · · , ρk0+M)T , and define:

gb(~u) = −1 +
∑

k∈B(b)

ρk, (2.28)

hb(~u) = −θb +
∑

k∈B(b)

ck ρk, (2.29)

then the constraints are of the form gb = 0 and hb = 0. The minimizer can
be approached as a steady state in a constrained gradient descent method
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[7]. Let ~u = ~u(τ) solve the equation:

~uτ = −∇~u f −
∑

b,Nb≥3

λb ∇~u gb −
∑

b,Nb≥3

ηb ∇~u hb, (2.30)

where the Lagrange multipliers λb and ηb are chosen so that the constraints
in each band are satisfied:

d

dτ
gb(~u) = ∇~u gb · ~ut

= −∇~u gb · ∇~u f − λb |∇~u gb|2 − ηb∇~ugb · ∇~uhb = 0, (2.31)

d

dτ
hb(~u) = ∇~u hb · ~ut

= −∇~u hb · ∇~u f − λb ∇~u hb · ∇~ugb − ηb|∇~uhb|2 = 0. (2.32)

We have used the fact that ∇~uhb or ∇~ugb only have nonzero components
in the band B(b). To solve (2.31)-(2.32) band by band, it is convenient to
consider

c̃k = 1 − ckNb
∑

j∈B(b) cj
, k ∈ B(b). (2.33)

If c̃k = 0, for all k ∈ B(b), then the second constraint hb = 0 is redundant,
ηb = 0, and

λb = −∇~ugb · ∇~uf

|∇~ugb|2
. (2.34)

If c̃k 6= 0, for some k ∈ B(b), replace the constraint hb = 0 by:

h̃b(~u) =
∑

k∈B(b)

c̃kρk − 1 +
Nb < wb >2

c
∑

k∈B(b) ck
= 0. (2.35)

Then the ~u equation is (2.30) with h̃b in place of hb. Due to ∇~u gb ·∇~u h̃b = 0,
λb is as given in (2.34), and:

ηb = −∇~uh̃b · ∇~uf

|∇~uh̃b|2
, (2.36)

where |∇~uh̃b|2 =
∑

k∈B(b) c̃
2
k, and |∇~ugb|2 = Nb in (2.34).
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Finally, let us put the ~u equation in matrix form. Let A be the symmetric
tridiagonal matrix with 1’s on the off-diagonals, and (−1,−2, · · · ,−2,−1)
on the diagonal (· · · refer to −2’s), then ∇~u f = A~u. Let R be the block
diagonal matrix where each block is the symmetric Nb ×Nb matrix with the
(i, j)-th entry being N−1

b +
c̃ic̃j

∑

k∈B(b) c̃2
k

. If
∑

k∈B(b) c̃
2
k is zero, the second term

in the sum is understood to be absent. The matrix form of ~u equation is
(I the identity matrix): ~uτ = (I − R)A~u, whose solution is in closed form
~u(τ) = exp{(I − R)Aτ} ~u0. The initial data ~u0 is given by the values of ρk0 ,
· · · , ρk0+M in the explicit formula (2.26).

3 Numerical Experiments

The forward and inverse transforms are implemented with the 256 point FFT.
For speech signals, Table 1 is used at sampling frequency 16 kHz. For music
signals, Table 2 is used at sampling frequency 44.1 kHz. Top (bottom) panel
of Figure 1 shows the oscillatory unpredicatibility measure c(k) of a speech
(music) frame. Top (bottom) panel of Figure 2 is the corresponding weighted
unpredicatibility measure ec(b) for the speech (music) frame, oscillation is
slower over the coarser scale b. In Figure 3 (Figure 4), we compare the
original and reconstructed FFT amplitude spectra (k ∈ [20, 128]) of a speech
(music) frame. The difference is negligible for k ∈ [0, 20]. We see that the
reconstructed FFT spectra captured well the upper envelope of the original
FFT spectra of the speech frame. For the music frame, much more details of
the FFT spectra are recovered. Except for a mismatched peak and a valley
over k ∈ [20, 40], the dashed and solid curves nearly agree. If one zooms
in further, one may see differences over smaller scales yet the reconstructed
(dashed) curve again keeps track of the envelope of the original spectral shape
well. Figure 5 compares the smoother spectral solution (τ = 2, dashed) with
the simple solution (τ = 0, solid) in case of a speech frame over k ∈ [30, 128]
where constrained optimization (smoothing) takes place. The steady state is
almost approached at τ = 2. The smoothing is similar for music frames.

Figure 6 (Figure 7) compares the original and reconstructed speech (mu-
sic) waveforms. The total relative l2 error for the speech signal in Figure 6 is
12 %, and is only 1.5% for music signal of Figure 7. This is consistent with
the better spectral fit of Figure 4 than that of Figure 3. The improvement
by the optimization (2.27)-(2.29) is however found to be minor both in terms
of the relative l2 error of reconstructed signals and perceptual difference in
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hearing the signals. The optimization step may be helpful however in other
signal processing tasks to be evaluated in the future.

The original and reconstructed (τ = 0) speech (music) signals in Fig-
ure 6 and Figure 7 can be heard at http://math.uci.edu/∼jxin/sounds.html.
Inspite of the errors (loss) incurred in the reconstruction, there is very lit-
tle perceptual difference between the original and the reconstructed signals,
thanks to the masking effects present in the human ears [8]. Hence we have
achieved the perceptually equivalent inversion of the many-to-one transform.

4 Discussion and Conclusion

A many-to-one auditory transform is introduced so that the resulting spec-
trum, especially towards the higher frequency regime, is much less refined
than the FFT spectrum, yet just enough to resolve the band widths of human
auditory filters (critical bands). A reconstruction of perceptually equivalent
inverse is given so that the inverted signal makes little perceptual difference
from the input signal even though there is a loss mathematically. The inver-
sion preserves the band energies and band signal to noise ratios, which prove
to be essential in capturing the perception of sounds. Both the forward and
inverse transforms are in closed analytical form and can be carried out in real
time. Test examples on speech and music signals illustrated the properties
of the transform and its inversion. The transform is a promising new tool
for sound compensation or enhancement that requires spectral manipulations
over the scale of critical bands.

A future study may concern with more accurate inversion while conserv-
ing additional spectral information of the signal, such as energy variation
about its mean value e(b)/Nb inside each frequency band with Nb ≥ 3. An-
other is to further develop MDAT in specific applications such as hearing
aids and hearing implants.
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Figure 1: Top panel: unpredicatibility measure c(k) of a speech frame, illus-
trating its oscillatory nature in FFT wave number k, k ∈ [0, 128]. Bottom
panel: unpredicatibility measure c(k) of a music frame, k ∈ [0, 128].
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Figure 2: Top panel: weighted unpredicatibility measure ec(b) of a speech
frame, b ∈ [0, 46]. Bottom panel: weighted unpredicatibility measure ec(b)
of a music frame, b ∈ [0, 41].
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Figure 3: Original (solid) and reconstructed (dashed, τ = 0) FFT amplitude
spectra of a speech frame.
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Figure 4: Original (solid) and reconstructed (dashed, τ = 0) FFT amplitude
spectra of a music frame.
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Figure 5: Comparison of reconstructed (solid, τ = 0) and (dashed, τ = 2)
FFT amplitude spectra of a speech frame. The dashed curve is smoother
while satisfying the same spectral constraints.
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Figure 6: Comparison of the input (top) and reconstructed (bottom, τ = 0)
speech signals in waveforms.
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Figure 7: Comparison of the input (top) and reconstructed (bottom, τ = 0)
music signals in waveforms.
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Table 1: Partition and psychoacoustic parameters for the 256 point FFT at
16 kHz sampling frequency. The columns are (from left to right) band index,
low FFT index of the band, high FFT index of the band, number of FFT
components in the band (width), the bark value of the band. The symmetric
part of the AC components of FFT are not listed. Zero index refers to DC
component of FFT.

Band Index Low FFT Index High FFT Index Width Bark Value

0 0 0 1 0
1 1 1 1 0.63
2 2 2 1 1.26
3 3 3 1 1.88
4 4 4 1 2.50
5 5 5 1 3.11
6 6 6 1 3.70
7 7 7 1 4.28
8 8 8 1 4.85
9 9 9 1 5.39
10 10 10 1 5.92
11 11 11 1 6.43
12 12 12 1 6.93
13 13 13 1 7.40
14 14 14 1 7.85
15 15 15 1 8.29
16 16 16 1 8.70
17 17 17 1 9.10
18 18 18 1 9.49
19 19 19 1 9.85
20 20 20 1 10.20
21 21 22 2 10.85
22 23 24 2 11.44
23 25 26 2 11.99
24 27 28 2 12.50
25 29 30 2 12.96
26 31 32 2 13.39
27 33 34 2 13.78
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Table 1: Continued.

Band Index Low FFT Index High FFT Index Width Bark Value

28 35 36 2 14.15
29 37 39 3 14.57
30 40 42 3 15.03
31 43 45 3 15.45
32 46 48 3 15.84
33 49 51 3 16.19
34 52 55 4 16.57
35 56 59 4 16.97
36 60 63 4 17.33
37 64 68 5 17.71
38 69 73 5 18.09
39 74 78 5 18.44
40 79 84 6 18.80
41 85 90 6 19.17
42 91 97 7 19.53
43 98 104 7 19.89
44 105 112 8 20.25
45 113 120 8 20.61
46 121 127 7 20.92
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Table 2: Partition and psychoacoustic parameters for the 256 point FFT
at 44.1 kHz sampling frequency. The columns are (from left to right) band
index, low FFT index of the band, high FFT index of the band, number
of FFT components in the band (width), the bark value of the band. The
symmetric part of the AC components of FFT are not listed. Zero index
refers to DC component of FFT.

Band Index Low FFT Index High FFT Index Width Bark Value

0 0 0 1 0
1 1 1 1 1.73
2 2 2 1 3.41
3 3 3 1 4.99
4 4 4 1 6.45
5 5 5 1 7.75
6 6 6 1 8.92
7 7 7 1 9.96
8 8 8 1 10.87
9 9 9 1 11.68
10 10 10 1 12.39
11 11 11 1 13.03
12 12 12 1 13.61
13 13 13 1 14.12
14 14 14 1 14.59
15 15 15 1 15.01
16 16 16 1 15.40
17 17 17 1 15.76
18 18 19 2 16.39
19 20 21 2 16.95
20 22 23 2 17.45
21 24 25 2 17.89
22 26 27 2 18.30
23 28 29 2 18.67
24 30 31 2 19.02
25 32 34 3 19.41
26 35 37 3 19.85
27 38 40 3 20.25
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Table 2: Continued.

Band Index Low FFT Index High FFT Index Width Bark Value

28 41 43 3 20.62
29 44 47 4 21.01
30 48 51 4 21.43
31 52 55 4 21.81
32 56 59 4 22.15
33 60 64 5 22.51
34 65 69 5 22.87
35 70 75 6 23.23
36 76 81 6 23.59
37 82 88 7 23.93
38 89 96 8 24.00
39 97 105 9 24.00
40 106 115 10 24.00
41 116 127 12 24.00
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