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Abstract

Speech signals are often produced or received in the presence of noise, which is known to degrade the performance of a
speech recognition system. In this paper, a perception- and PDE-based nonlinear transformation was developed to process
spoken words in noisy environment. Our goal is to distinguish essential speech features and suppress noise so that the processed
words are better recognized by a computer software. The nonlinear transformation was made on the spectrogram (short-term
Fourier spectra) of speech signals, which reveals the signal energy distribution in time and frequency. The transformation
reduces noise through time adaptation (reducing temporally slowly varying portions of spectra) and enhances spectral peaks
(formants) by evolving a focusing quadratic fourth-order PDE. Short-term spectra of speech signals were initially divided into
three (low, mid and high) frequency bands based on the critical bandwidth of human audition. An algorithm was developed to
trace the upper and lower intensity envelopes of signal in each band. The difference between the upper and lower envelopes
reflects the signal-to-noise (SNR) ratio of each band. Constant, low SNR signals in each band were adaptively decreased to
reduce noise. Then evolution of the focusing PDE was used to enhance the spectral peaks, and further reduce noise interference.
Numerical results on noisy spoken words indicated that the transformed spectral pattern of the spoken words was insensitive
to noise for SNR ranging from 0 to 20 dB (decibel). The spectral distances between noisy words and original words decreased
after the transformation. A numerical experiment was performed on 11 spoken words at SNR= 5 dB. A noisy word is
recognized numerically by computing the closestL2 spectral distance from the clean template. The experiment reached a
recognition rate as high as 100%. Analyses on the properties of the transformation are provided. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Speech recognition typically proceeds in two steps. First, an initial signal, an acoustic wave, is divided in time
into nearly stationary overlapping frames (with a rate about one frame per 10–30 ms) and is transformed into the
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frequency space using windowed Fourier transform. The resulting spectral sequence, the spectrogram, shows the
spectrum of each frame as a function of time. Hence the spectrogram is a discrete function of two variables, time and
frequency. The magnitude of spectrogram represents energy (power) distribution of signals in time and frequency.
In a noisy environment, the speech spectrogram contains multiple-scale information, and the essential features
of speech signal (e.g. formant frequencies) are buried inside a masking noise spectrum. Thus, extracting speech
spectral features and suppressing noise is one necessary step in speech recognition. Once the speech patterns are
well defined, statistical tools often are used, as a second step, for pattern recognition.

Our method in this paper is focused on the first step, the signal processing step. A commonly used set of features
to define the pattern of spoken words are the MFCC (Mel frequency cepstral coefficient). These coefficients arise in
rational approximations in the least-square sense of the log-magnitude of the raw power spectrum with frequency
scaled according to human auditory perception, the so-called Mel frequency scale (roughly logarithmic frequency
scale). The scaled spectrum was decorrelated using the DCT (discrete cosine transform) to obtain the MFCC.
Statistical tools, such as HMM (hidden Markov model [12]) could then be used for pattern recognition.

It is well known that noisy distortions of speech spectral data often degrade the recognition rates by creating
mismatches between speech patterns of the same word. It has been well documented that preserving intrinsic speech
spectral patterns and suppressing noise influence during the spectral processing stage could dramatically increase
the recognition rates. In particular, incorporating time adaptation, isolating spectral peaks and enhancing peak
magnitudes, help the recognition task to focus on phonetically meaningful aspects of spectrogram, and reduce the
sensitivity of the pattern recognition to noise interference. Convincing experimental evidence to these effects have
been demonstrated by Strope and Alwan [15], Hermansky and Morgan [7], among others.

However, the reported methods on signal processing involve many ad hoc procedures, and proceed more or less
case by case. Our objective here is to introduce a systematic mathematical approach to perform adaptation and peak
isolation (focusing), based on both human hearing perception and properties of a class of nonlinear PDE’s (the
focusing Cahn–Hillard equation [3] with quadratic nonlinearities). The end result of our treatment is a nonlinear
transformation that distinguishes main speech spectral features and removes the noisy disturbances. We shall work
directly on raw spectrogram and avoid making rational approximations.

Adaptation basically is to reduce any portion of a spectral curve at fixed frequency if there is not enough variation
in time, a process occurring in human hearing to remove redundancy. For clean signal, the spectral curve is smooth
in time, and so one can use derivative to measure this variation. Due to noise, the spectral curve becomes rough, and
one must devise an alternative quantity instead. We first divide the frequencies into three (low, mid and high) bands
and define an average curve for each band as a representative. Such a three band division is based on human hearing
response to multi-frequency stimuli (critical bandwidth) [11]. We then construct an upper and a lower envelope for
each band representative so that the difference of the two envelopes is a good measure of true signal variation in
time for each band. When the difference is below a threshold (2 dB), indicating noise or redundant signal, adaptation
takes place.

Peak focusing for a fixed time during voiced speech also has support from psycho-physical experiments on lateral
inhibition in two simultaneous tones (see [8,9]). Auditory response to the two tones, one stronger than the other,
is that the stronger tone is more pronounced and weakens the other tone. The intensity versus frequency plots of
the response in [8] show the peak focusing property which is quite similar to the focusing shape in our quadratic
Cahn–Hillard PDE in the sense that a peak is more focused than a nearby valley by a ratio as large as 24 dB. As
pointed out in [8,9], the more pronounced peaks in auditory processing help speech discrimination and recognition
both in terms of peak locations and the shapes of the peak areas.

We shall show both numerical findings and analytical properties of our transformation. Because the transformation
is performed in spectral space, the adaptation, in essence, corresponds to energy dissipation, and peak focusing
corresponds to scale separation in the physical space. The nonlinear processing in spectral space is different from
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nonlinear image processing methods on edge detection and noise removal (see [1,4,10,13] and references therein
for recent literature). In image problems, nonlinear processing employs selective diffusion or smoothing and occurs
directly in physical space. There are also similarities. In either application, the processing strives to enhance the
desired features, such as edges in image and vision or spectral peaks in speech, and reduce noise.

The paper is organized as follows. In Section 2, we introduce our nonlinear transformation, and its numerical
algorithm, and show its adaptive and focusing properties with illustrative numerics and heuristics. In Section 3,
we show the original and processed spectrograms on three noisy signals with SNR equal to 5, 10, and 20 dB. The
noise-free portion of the signal is the word “choice”. We also show distance plots for noisy and processed signals
to the corresponding clean signals using spoken digits 1–4, and demonstrate that the processed signals are closer to
the clean signals after processing than the noisy signals in the SNR range 0–20 dB. At 5 dB SNR, we show a test
on 11 spoken digits with 100% rate of recognition. In Section 4, we explore the analytical aspect of peak focusing.
Section 5 is the conclusion.

2. Nonlinear transformation, algorithms and properties

Let ai,j = a(ti , xj ), 1 ≤ i ≤ I, 1 ≤ j ≤ J , be the raw speech spectral data arising from short-time window
Fourier transform of a sound wave. HereI andJ are positive integers, andai,j ’s are complex numbers, however
in this work, we shall only use their magnitude (intensity)|ai,j |. The ti ’s label the nearly stationary overlapping
time frames mentioned in Section 1, andxj ’s are discretizations of frequency (frequency filters) on the Bark-scale
(roughly uniform in log-scale of natural frequency with unit Hz). Let the log-magnitude power spectrum beui,j =
10(log10|ai,j |2 − log10 I0), whereI0 is a reference intensity.ui,j ’s are real and in unit of dB (decibel). All our
computation will be conducted onu in dB unit.

For the sample of our numerical computation,I = 43, J = 26. See Fig. 1, for a greyplot of the noise-free
spectrogram of the word “choice” (left frame), and the Bark-scaled log-magnitude spectrogram (right frame) that
makes phonetic components clearer. In Fig. 1, the horizontal axis is time in second, and vertical axis is frequency
in unit of kHz on the left frame and in unit of Bark on the right frame. We see the high frequency dark blobs
during the beginning (0–0.1 s) and ending (0.4–0.55 s) periods, that correspond to “ch” and “ce”, and the two
major dark blobs during the intermediate period corresponding to “oi”. Bark-scale is similar to Mel-scale, and
will be used in our computation and explained more in detail in connection with critical band of human audition
shortly. We shall place theI × J points uniformly on a rectangular domain [0, T ] × [0, X] so that the grid size is
h ∈ (0, 0.09), T = hI, X = hJ.

When noise is present,ui,j receives a lot of energy towards the high frequency region, see the plot ofu20,j for
SNR= 5 dB (dotted line), and SNR= 20 dB (solid line), in Fig. 2 . Noise also makesui,j rough in time.

Time and frequency directions must be treated differently, because speech signals are strongly time-dependent
and the time window for processing is short. In human auditory processing, if the spectral amplitude at any fixed
frequency is not varied enough over a time window, the human auditory system is going to reduce its response
and ignore that segment of signal. This phenomenon is called adaptation in time and is related to the decay of an
onset response of a neuron with time. The question is how we measure the variation. For fast varying rough data,
it is natural to look at the distance between its upper and lower envelopes which change much less rapidly. The
distance between the envelopes will encode the variation of the signal. It is unnecessary to compute envelopes for
each frequency. Motivated by the critical bandwidth phenomenon in human hearing response (see [11, Chapter
4]), we divide the frequencies into three channels, low frequency channel (less than 1000 Hz), middle frequency
channel (between 1000 and 1700 Hz), and high frequency channel (above 1700 Hz, often also below 5000 Hz). The
low frequency channel is uniformly filtered, the filters in the middle and high frequency channels have increasing
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Fig. 1. Noise-free spectrogram of the word “choice”.

Fig. 2. Noise effect on the signal log-magnitude spectrum: energy buildup in high frequencies.
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spacings in between with a growth factor of 10%. The use of critical band or the Bark-scale is similar to Mel-scale,
and corresponds to constant spatial reception distances along the basilar membrane. For each channel, we compute
an average curve by

vi,k = #{j ∈ Jk}−1
∑
j∈Jk

ui,j , (2.1)

wherek = 1, 2, 3, andJk is the set of filter numbers in channelk. Fig. 6 showsvi,k of the data signal with
SNR= 5 dB. For all our computations in the paper,J1 = {1, . . . , 10}, J2 = {11, . . . , 17}, J3 = {18, . . . , 26}.

Next, we compute the upper and lower envelopes onvk,j by the following recipe. Fix anyk = 1, 2, 3, write
vk,j = vj for short, and denote the upper (lower) envelopes byēj (ej ). The upper envelope is computed using
local statistics, and is the sum of local mean and local deviation. The local mean is the backward five points moving
average, and the local deviation is the usual empirical deviation in statistics also using five points in the past. Using
past information is necessary in processing live speech signals.

Algorithm on upper envelope:

BEGIN
for j = 1, . . . , 4, ēj = vj ;

for j = 5, . . . , J, µj = 1
5

∑5
k=1vj−k+1;

for j = 5, . . . , J, sj = 1
4

(∑5
k=1(vj−k+1 − µj )

2
)1/2

;

for j = 5, . . . , J, ēj = µj + sj ;
for j = 5, . . . , J, e∗,j = µj − sj ;
END.

The lower envelope is computed based on hearing perception, instead of thee∗,j , because the distance between
ēj ande∗,j is the local deviation of the noise, and is going to overlook the imbedded signal. The lower envelope
will basically follow the running minimum ofe∗,j , and only follows the other parts of thee∗,j ’s (increasing or
decreasing but not near a running minimum) with a discount factor per∈ (0, 0.2). Following e∗,j turns out to be
less volatile than followingvj . However, for the first four points,ej shall followvj to initiate the process.

Algorithm on lower envelope:

BEGIN
e∗,1 = v1 = e1;
STEP 1:j = 2, . . . , 4,

ej = ej−1 + per∗ (vj − vj−1) if vj > vj−1;
ej = vj if vj ≤ vj−1, vj ≤ ej−1;
ej = ej−1 + per∗ (vj − vj−1) if vj ≤ vj−1, vj > ej−1.

(2.2)

STEP 2:j = 5, . . . , J ,

ej = ej−1 + per∗ (e∗,j − e∗,j−1) if e∗,j > e∗,j−1;
ej = e∗,j if e∗,j ≤ e∗,j−1, e∗,j ≤ ej−1;
ej = ej−1 + per∗ (e∗,j − e∗,j−1) if e∗,j ≤ e∗,j−1, e∗,j > ej−1.

(2.3)

END

In Fig. 3, we show the computed upper and lower envelopes along withv1,j in channel 1, for our data “choice”
with SNR = 5 dB. Similarly, in Figs. 4 and 5, we show the resulting envelopes in channel 2 and channel 3. The
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Fig. 3. Upper and lower envelopes in channel 1.

Fig. 4. Upper and lower envelopes in channel 2.
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Fig. 5. Upper and lower envelopes in channel 3.

discount factor per= 10%. The upper envelopes have a slight delay response to high peaks, and lower envelopes
basically follow the running minimum yet do not go as deep. The lower envelopes have much less variation than
the upper envelopes, and this sets the stage for examining the difference of envelopes. In Fig. 6, we plot the three
vk,j ’s, and we see thatv3,j > v2,j , andv2,j is abovev1,j and comparable near the peak location ofv1,j . In Fig. 7,
we plot the threēek,j − ek,j ≡ δk,j , and the order is reversed. The channel 1, having the first signal peak, is highest;
channel 2, having the secondary signal peak, is second highest; and channel 3, with almost no major signal peaks
and mostly noise, is the lowest.

We can now useδk,j as a measure of signal caused variation. Ifδk,j is below a threshold value in dBc (dBc =
2 dB in our calculation), the adaptation in time will ensue. The adaptation processing is done numerically by a
discrete (e.g. finite difference) approximation of the nonlinear nonlocal PDE (δ(u) viewed as a nonlocal operator
in x):

uτ + f (δ(u) − dBc, τ )u = 0, (2.4)

wheref is a nonnegative nonlinear function, monotone decreasing inτ , the processing time, and behaves as a
transition layer (a step function) inδ(u) − dBc. One simple choice off is

f = γχ{δ(u)−dBc≤0} · χ{τ∈[0,τ0]}, (2.5)

whereχ is the characteristic function,γ > 0, the adaptation rate, andτ0 > 0 the timescale of adaptation. Notice
that if δ(u) is above the threshold dBc or if u = 0, the solution will reach a steady state.

For smallτ , solutionu to (2.4) is well approximated by

u0 exp{−γχ{δ(u0)−dBc≤0}τ }. (2.6)
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Fig. 6. The three frequency averaged curves in the three channels, respectively.

Fig. 7. Difference of upper and lower envelopes in the three channels.
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Fig. 8. Time adaptation viewed on log-amplitude/frequency plots with SNR= 5 and 10 dB signals.

In Fig. 8, we plot the SNR= 5 dB signal, its adaptation, and SNR= 10 dB signal against frequency filter number at
the 20th time frame. The processing time isτ = 0.5 in (2.6), dBc = 2 dB, γ = 1. We observe the noise suppression
effect of adaptation. One could also take asf a smoothed version of (2.5) and the resulting adapted curve will be
smoother.

Subsequent to adaptation comes the peak isolation and peak enhancement stage of processing. A PDE that is
able to locally focus peaks (large curvature regions and not flat regions), and preserveL1-norm (or energy on the
log-scale magnitude), will serve the purpose. One such PDE is the following quadratic focusing Cahn–Hillard (C–H)
equation:

uτ = −α(u2)xx − εuxxxx, (2.7)

whereα ≥ 1, 0 < ε � 1. Eq. (2.7) can be rewritten as

uτ + 2αuxux = −2αuuxx − εuxxxx,

hence positive curvature regions(uxx < 0) go up, negative curvature regions(uxx > 0) go down. Moreover, positive
slope regions advects to the right, and negative slope regions advects to the left. Combining these two effects,
we have the desired local peak focusing. This motion is, however, highly unstable and requires a little bit of high
wavenumber stabilization(ε > 0) to be numerically computable, thus the C–H equation (2.7). To avoid focusing
small peaks due to noise, we find it effective to first take a logarithm on initial data ofu, evolve it with C–H
equation, then exponentiate the result. The composition of logarithm, the C–H evolution, and exponential function
on the initial data ofu stabilizes the numerical solution for rough initial data, and is similar to the compression and
expansion nonlinear transform on signal amplitude in the RASTA method [7].

A numerical illustration of the focusing effect is in Fig. 9, where the solid line is a smooth approximation of
a fixed time voice spectral curve, and the dotted line is the evolved curve under (2.7) at time= 0.015, with
α = 1.5, ε = 0.09, space step= 0.09, time step= 10−5. We use second-order Crank–Nicolson implicit scheme
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Fig. 9. Focusing effects of the quadratic C–H equation.

[14] to discretize (2.7) and imposeuxx = uxxx = 0 boundary conditions atx = 0 andX to avoid boundary layers
due to smallε. The computation is initiated by an explicit second-order central differencing method, and Newton
iteration is carried out for each later time step.

To summarize, our nonlinear transformation consists of (1) time adaptation using perception-based three frequency
channel envelopes and (2) local spectral peak focusing using the composition of logarithmic function, the C–H
evolution (2.7), and exponential function. In next section, the transformation will be shown via numerical examples
to yield stable results under noise perturbations, and provide useful information for recognition of noisy data.

3. Numerical results and relations to other processing methods

We shall treat the word “choice” in Fig. 1 degraded with noise of various levels, SNR= 20, 10, 5 dB. In the time
adaptation stage, the threshold is 2 dB, duration isτ = 0.5, γ = 1. In the peak focusing stage, spatial discretization
step= 0.09, time step= 10−5, and evolution takes 120 time steps (to reach a preset maximum of derivative of
solution). The total time steps of evolution can be determined based on clean words as part of the training.

In Fig. 10, we show a time slice of the original signal (log-amplitude plot versus frequency) with SNR= 5 dB
(solid), the adapted signal (dashed), the adapted and peak focused signal (dotted). The overall effects of processing
with our nonlinear transformation can be seen on greyscale plots of original and processed signals.

In Fig. 11, the left frame is the noisy signal(SNR = 20 dB) and the right frame is the transformed signal. The
horizontal axis is time, and the vertical axis is frequency. Darker colors correspond to higher energy density areas.
The first two harmonics of the vowel region “oi” are enhanced and isolated. The consonant region “ch” is preserved
and the energy is in the high frequency region. The “ce” consonant is downplayed a lot. Figs. 12 and 13 are obtained
using the same processing parameters and stopping criterion, with noise levels (SNR= 10 dB and SNR= 5 dB).
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Fig. 10. Comparison of an SNR= 5 dB signal with the adapted, the adapted and peak focused signals at a fixed time 0.1 s.

Fig. 11. Noisy (left frame) and processed (right frame) log-power spectrogram for the word “choice” with noise level SNR= 20 dB.
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Fig. 12. Noisy (left frame) and processed (right frame) log-power spectrogram for the word “choice” with noise level SNR= 10 dB.

Even though the noise levels go up, the processed signals are nearly the same. This shows that the transformation
is insensitive to noise perturbations, and it captures the essential features of the power spectrum.

In Fig. 14, we show the reducedL2 spectral distances in four plots from processing noisy digits one to four with
SNR range 0–20 dB, with the same parameters as before exceptα = 3.5. The reduction is more pronounced for low
SNR regime. Other plots (not shown) are similar for processing noisy digits five to nine, oh, and zero. The choice
of other spectralLp-norm(p ≥ 1) [6] does not alter the results qualitatively.

In Figs. 15–17, we plot theL2 spectral distances from noisy spoken words (one to nine, oh, zero), to the clean
words at SNR= 5 dB. The clean words on the template have been processed with the same set of parameters
as in Fig. 14. The minima of the distances select the recognized words, and we see that the processing identifies
successfully all spoken words while measuring the noisy signals directly can only make out two correct words. We
also notice that cross-distances tend to become smaller after processing, however, in the top left frame of Fig. 16,
the distance from noisy six to clean five gets larger after processing. This is due to the focusing effect, so that the
spoken word six gets penalized for missing the frequency locations of clean spoken word five. In other frames, peak
focusing helps lower the distance to the correct words (say from noisy one to clean one) more than to the other
words.

We also performed test for SNR= 3 dB, the recognition rate deteriorates to 8/11, about 73%. We carried out
another test with additional noise at SNR= 5 dB added to the low frequencies in channel 1, the resulting rate is
10/11, about 91%. Further research is needed to improve adaptation and focusing in these settings. We also hope to
exploit more of human hearing perception and find an efficient learning and training strategy.
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Fig. 13. Noisy (left frame) and processed (right frame) log-power spectrogram for the word “choice” with noise level SNR= 5 dB.

Fig. 14.L2 distances from noisy and processed signals to clean signals (spoken digits one to four) show distance reduction after processing.
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Fig. 15.L2 distances from noisy and processed signals to clean one to four with minimum distances.

Fig. 16.L2 distances from noisy and processed signals to clean five to eight with minimum distances.
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Fig. 17.L2 distances from noisy and processed signals to clean nine, oh, zero, and minimum distances.

Let us comment on how our transformation is related to previous works. The RASTA (relative spectra) method of
[7] exploits the different temporal spectral behavior of noise and signals. Time adaptation is a key component of the
method in that RASTA suppressed constant or less varied portions in the time trajectory of each frequency before
applying the usual rational approximation (all pole modeling). Besides this, RASTA also transforms the amplitude
nonlinearly based on human hearing laws. Fig. 8 in [7] clearly shows the adaptation effects. Both time adaptation and
peak focusing are utilized and advocated in [15]. It is interesting to compare our Fig. 10 with Fig. 10 in [15], and our
greyplots (Figs. 11–13) with their Fig. 11, where the SNR ratios range between 5 and 40. Results of their peak isolated
method (MFCCAP) resemble ours, and were found to be more robust to background noise than standard MFCC.

In the above-referenced works, the processing used estimation methods such as all pole modeling, and raised-sine
cepstral liftering technique for peak isolation. The basic idea of cepstral liftering is to expand the even log-spectrum
in terms of cosine basis functions, with the first few coefficients (c0, c1, and higher) representing log-spectrum
average(c0), log-spectrum tilt(c1) and varying ripples (higher coefficients). Then the so-called raised-sine lifter
de-emphasizes slow changes with frequency (related to overall level and vocal driving function characteristics) as
well as fast changes (numerical artifacts). The processing emphasizes moderate variations with frequency, and so
both spectral peaks and valleys.

Our method is based on properties of solutions to the focusing C–H equation. It treats the raw data directly without
all pole approximation or DCT, and offers more flexibility and robustness in handling peak enhancement because
it uses local geometrical information (curvature, slopes) without computing the expansion coefficients which also
may well encode undesired features from other points (such as ripples and roughness from other frequencies away
from the harmonics).

Moreover, we shall show in the next section that the C–H focusing is asymmetric in that the peak is more fo-
cused than a neighboring valley. This turns out to be consistent with the findings of Houtgast’s [8] psycho-physical
auditory experiment on two-tone lateral inhibition: a strong tone suppresses the nearby weak tones and there is a
peak/valley height ratio from 5 to 24 dB. Houtgast attributed this phenomenon to processes within cochlear and to
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the nonlinear aspect of the neural coding of a stimulus sound spectrum. In a related article, Houtgast [9] pointed
out that the neural projection of the actual sound spectrum near formant peaks becomes sharper, which helps vowel
discrimination and recognition.

4. Analytical properties of the focusing C–H

The C–H equation (2.7) and related fourth-order parabolic equations are known to be well posed locally in
time in suitable Sobolev spaces [2,5] among others. When (2.7) is considered on the interval [0, L] under the zero
Neumann boundary conditions:ux |x=0,L = 0, uxxx|x=0,L = 0, and initial condition:u0(x) ∈ H 2([0, L]) with zero
traceu0,x |x=0,L = 0, Elliot and Zheng [5] showed that ifε > L2/π2, andu0 is sufficiently small, then there is a
global solutionu ∈ H 1([0, ∞); H 2([0, L])), so that

lim
τ→∞

∥∥∥∥u − L−1
∫ L

0
u(x) dx

∥∥∥∥∞
= lim

τ→∞(‖ux‖∞ + ‖uxx‖2) = 0.

This result demonstrates the smoothing effect of the fourth-order term.
If ε is small or initial data is not small, solutions can blow up in finite time due to the quadratic term. We are more

interested in the stage prior to blow up, i.e. the focusing regime, best illustrated on the entire line by self-similar
solutions, which may serve as local approximations of focusing time-dependent solutions.

With no loss of generality, setα = 1, ε = 1, andu = (τ ∗ − τ)−1/2f (x/(τ ∗ − τ)1/4). Then it follows from (2.7)
that(ξ = x/(τ ∗ − τ)1/4, ′ = ∂/∂ξ):

1
2f + 1

4ξf ′ + f ′′′′ + (f 2)′′ = 0. (4.1)

We shall only consider even solution of (4.1), and so it is enough to letξ ≥ 0. Eq. (4.1) has an unbounded solutionf =
− 1

12ξ
2, on which the fourth derivative term vanishes identically. The corresponding solution

u = − 1
12(x

2/(τ ∗ − τ)) shows the parabolic shape of blowup profile.
Eq. (4.1) also has a first integral ([2]):

1
4ξ2f − f 2 + ξ(f 2)ξ + ξfξξξ − fξξ = c0. (4.2)

Integrating (4.1) overξ ≥ 0 indicates that any spatially decaying solution must change sign and has zero integral.
Let us look for solutions to (4.1) such thatf ′(0) = f ′′′(0) = 0, f (0) > 0, andf ′′(0) < 0. LetG = ∫ ξ

0 f (ξ) dξ ,
then integrating (4.1) from zero toξ gives

1
4G + 1

4ξGξ = −(f 2)ξ − fξξξ ,

and using (4.2) to get

1
4ξG + 1

4ξ2Gξ = 1
4ξ2Gξ − (Gξ )

2 − Gξξξ − c0,

or

1
4ξG + (Gξ )

2 + Gξξξ = −c0 ≡ c∗. (4.3)

In terms ofG, any spatially decaying solution inf corresponds to a positive solution (G(ξ) > 0 whenξ > 0) of
(4.3) such thatG ∼ 4c∗ξ−1 + h.o.t. for largeξ .

If we regard (4.3) as an initial value problem, with initial data:G(0) = G′′(0) = 0, G′(0) > 0, G′′′(0) < 0,

c∗ = (G′(0))2 − G′′′(0) > 0, then it is not hard to show that the solutions to the initial value problem increase to a
local maximum from zero then go down. How they go down to near zero depend onc∗. The solutions are oscillatory
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about zero ifc∗ is small when bothG′(0) andG′′′(0) are small in absolute value; while ifc∗ is large, the solutions
either blow up to negative infinity in finite time or become negative with a steep negative derivative. Hence, the
desired positive global solution withG(ξ) → 0 can only be available for some bounded finite value ofc∗. Numerical
simulation of [2] showed such a solution and suggests that it exists uniquely and is dynamically attracting.

Eq. (4.3) is expedient for establishing properties of solutions. Let us first show an asymmetry property of the
profilef .

Proposition 4.1. Letf = f (ξ) be a bounded smooth solution of(4.1)such thatf (0) > 0, fξ (0) = 0, fξξ (0) ≤ 0,

f ∈ L1(0, ∞),
∫ ξ

0 f (s) ds > 0 for anyξ , then

f (0) > sup
ξ≥0

− f (ξ). (4.4)

Proof. Sincef decays to zero at infinity, the supremum in (4.4) is achieved at a finite pointξ1 wheref has a
negative local minimum. Eq. (4.3) reads inf :

fξξ + f 2 + ξ

4

∫ ξ

0
f (s) ds = c∗, (4.5)

which yields upon evaluation at bothξ = 0 andξ = ξ1:

f 2(0) ≥ fξξ (0) + f 2(0) = fξξ (ξ1) + f 2(ξ1) + ξ1

4

∫ ξ1

0
f (s) ds > f 2(ξ1).

The proof is finished. �

Proposition 4.1 shows that the focusing tends to be more on a peak area than on a valley area. This is qualitatively
similar to Fig. 9.5 of Houtgast’s [8] work on lateral suppression. The assumption

∫ ξ

0 f (s) ds > 0 is realized iff
changes sign only once alongξ > 0, as found in its numerical computation [2].

The next property puts a constraint onf (0) in terms ofc∗.

Proposition 4.2. Under the same assumptions as in Proposition4.1,f 2(0) ≤ 6c∗.

Proof. Multiplying (4.5) byfξ and integrating on [0, ξ ], we have

f 2
ξ

2
+ f 3

3
+ 1

4

∫ ξ

0
ξfξ

∫ ξ

0
f = c∗(f (ξ) − f (0)) + f 3(0)

3
. (4.6)

Noting that

∫ ξ

0
ξfξ

∫ ξ

0
f = ξf

∫ ξ

0
f −

∫ ξ

0
f

∫ ξ

0
f −

∫ ξ

0
ξf 2 = ξf

∫ ξ

0
f − 1

2

(∫ ξ

0
f

)2

−
∫ ξ

0
ξf 2, (4.7)

we have from (4.6),

f 2
ξ

2
+ f 3

3
+ ξf

4

∫ ξ

0
f − 1

8

(∫ ξ

0
f

)2

− 1

4

∫ ξ

0
ξf 2 = c∗(f (ξ) − f (0)) + f 3(0)

3
. (4.8)

Evaluating (4.8) atξ = ξ1 shows

f 3(ξ1)

3
+ ξ1f (ξ1)

4

∫ ξ1

0
f − 1

8

(∫ ξ1

0
f

)2

− 1

4

∫ ξ1

0
ξf 2 = c∗(f (ξ1) − f (0)) + f 3(0)

3
,
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and in view of Proposition 4.1,

c∗f (0) >
f 3(ξ1)

3
− c∗f (ξ1) = f 3(0)

3
− c∗f (0) + 1

4

∫ ξ1

0
ξf 2 + 1

8

(∫ ξ1

0
f

)2

−ξ1f (ξ1)

4

∫ ξ1

0
f >

f 3(0)

3
− c∗f (0). (4.9)

It follows that 2c∗f (0) > 1
3f 3(0), or f 2(0) < 6c∗, and the proof is complete. �

5. Conclusions

A perception- and PDE-based method is developed to process spoken words. Low, middle and high frequency
channels are defined according to the critical bands of human audition. Difference of slowly varying energy envelopes
is adaptively decreased in time to reduce noise. A quadratic focusing C–H equation is evolved to enhance spectral
peaks corresponding to fundamental voice frequencies. The method is tested on spoken words (choice, spoken
digits including zero and oh) for SNR= 0, 3, 5, 10, 20 dB. TheL2 spectral distances between processed signals
and the corresponding noise-free signals are reduced by as much as 50% for SNR= 0, 3, 5, 10 dB. Numerical
experiment at SNR= 5 dB shows 100% recognition rate on 11 spoken digits. More numerical experiments and
human hearing-based modeling will be carried out for other spoken words, and at even lower SNR values.
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