Erdös-Mordell-type inequalities

Zhiqin Lu

Zhiqin Lu graduated from the Courant Institute of New York University in 1997. He was a Ritt Assistant Professor at Columbia University before joining the faculty of the University of California at Irvine in 2000. His field of research is differential geometry.

The famous Erdös-Mordell inequality states that, if \(P \) is a point in the interior of a triangle \(ABC \) whose distances are \(p, q, r \) from the vertices of the triangle and \(x, y, z \) from its sides, then

\[
p + q + r \geq 2(x + y + z).
\]

In the paper by Satnoianu [1], some generalizations of the above inequality were given. His proof depends heavily on the geometry of the triangle \(ABC \). In this note, we give a more algebraic proof of the Erdös-Mordell inequality.

Theorem. Let \(p, q, r \geq 0 \) and let \(\alpha + \beta + \gamma = \pi \). Then we have the inequality

\[
p + q + r \geq 2\sqrt{qr} \cos \alpha + 2\sqrt{rp} \cos \beta + 2\sqrt{pq} \cos \gamma.
\]

(1)

Proof. We consider the following quadratic function of \(x \):

\[
x^2 - 2(\sqrt{r} \cos \beta + \sqrt{q} \cos \gamma)x + q + r - 2\sqrt{qr} \cos \alpha.
\]

(2)

Then a quarter of the discriminant is

\[
\frac{1}{4} \Delta = (\sqrt{r} \cos \beta + \sqrt{q} \cos \gamma)^2 - (q + r - 2\sqrt{qr} \cos \alpha).
\]

Since \(\alpha + \beta + \gamma = \pi \), we have

\[
\cos \alpha = -\cos(\beta + \gamma) = -\cos \beta \cos \gamma + \sin \beta \sin \gamma.
\]

1Partially supported by the NSF CAREER award DMS-0347033.
Using the above identity, the discriminant can be simplified as
\[\Delta = -(\sqrt{r} \sin \beta - \sqrt{q} \sin \gamma)^2 \leq 0. \]
Thus the expression (2) is always nonnegative. Letting \(x = \sqrt{p} \), we get (1).
\[\square \]

Corollary. Let \(x', y', z' \) be the length of the angle bisectors of \(\angle BPC \), \(\angle CPA \), and \(\angle APB \), respectively. Then we have
\[p + q + r \geq 2(x' + y' + z'). \]

Proof. We have
\[x' = \frac{2qr}{q + r} \cos \gamma \leq \sqrt{qr} \cos \gamma, \]
\[y' = \frac{2pr}{p + r} \cos \beta \leq \sqrt{pr} \cos \beta, \]
\[z' = \frac{2pq}{p + q} \cos \alpha \leq \sqrt{pq} \cos \alpha. \]
The corollary follows from the theorem.
\[\square \]

Remark. Since \(x' \geq x, y' \geq y \) and \(z' \geq z \), the corollary implies the Erdős-Mordell inequality
\[p + q + r \geq 2(x + y + z). \]

References