A complex geometric proof of Tian-Yau-Zelditch expansion

Zhiqin Lu

Department of Mathematics,
UC Irvine, Irvine CA 92697

October 21, 2010
Let \((M, L)\) be a polarized Kähler manifold.
Let \((M, L)\) be a polarized Kähler manifold. Let \(h\) be a Hermitian metric on \(L\) such that \(c_1(L) = \omega\), the Kähler metric.
Let \((M, L)\) be a polarized Kähler manifold. Let \(h\) be a Hermitian metric on \(L\) such that \(c_1(L) = \omega\), the Kähler metric. Let \(E\) be a Hermitian vector bundle.
$H^0(M, L^m \otimes E)$ and $H^0(M, L^m)$ are Hermitian inner product spaces with respect to the L^2 metrics.
When L is ample, we know that L^m is very ample for m big enough.
When L is ample, we know that L^m is very ample for m big enough. Let S_0, \cdots, S_d be an orthonormal basis of $H^0(M, L^m)$. Then the map

$$x \mapsto [S_0, \cdots, S_d]$$

gives an embedding f_m of M to $\mathbb{C}P^d$. The metric

$$\frac{1}{m} f_m^* (\omega_{FS})$$

is called the Bergman metric of M.
Theorem (Tian)

\[\frac{1}{m} f_m^*(\omega_{FS}) - \omega \to 0 \]

as \(m \to \infty \).
Theorem (Tian)

\[
\frac{1}{m} f^*_m(\omega_{FS}) - \omega \to 0
\]

as \(m \to \infty \).

(In fact, Tian proved the convergence rate to be \(m^{-\frac{1}{2}} \), and Ruan improved it to \(1/m \).)
Let \(\{ S_1^m, \cdots, S_{d_m}^m \} \) be any orthonormal basis of \(H^0(M, L^m) \). Then

\[
\mathcal{B}(x) = \mathcal{B}_m(x) = \sum ||S_j||^2
\]

is called the Bergman kernel of the polarized Kähler manifold.
Let \(\{ S_1^m, \cdots, S_{d_m}^m \} \) be any orthonormal basis of \(H^0(M, L^m) \). Then
\[
\mathcal{B}(x) = \mathcal{B}_m(x) = \sum ||S_j||^2
\]
is called the Bergman kernel of the polarized Kähler manifold. Important observation
\[
\frac{1}{m} f_m^*(\omega_{FS}) - \omega = \frac{1}{m} \partial \bar{\partial} \log \mathcal{B}(x).
\]
Theorem (Catlin, Zelditch)

There is an asymptotic expansion:

\[\mathcal{B} \sim a_0(x)m^n + a_1(x)m^{n-1} + a_2(x)m^{n-2} + \cdots \]

for certain smooth coefficients \(a_j(x) \in \text{Hom}(E, E) \) with \(a_0 = I \). More precisely, for any \(k \)

\[\| \mathcal{B}(x) - \sum_{k=0}^{N} a_j(x)m^{n-k} \|_{C^\mu} \leq C_{N, \mu} m^{n-N-1}, \]

where \(C_{N, \mu} \) depends on \(N, \mu \) and the manifold \(M \) and the bundles \(L, E \).
Result of BBS

Robert Berman and Bo Berndtsson and Johannes Sjöstrand
A direct approach to Bergman Kernel Asymptotics for Positive Line Bundles
Arkiv Math, 46(2): 197-217, 2008
In the paper, they proved the existence of the Bergman kernel expansion directly, without using the deep result of Fefferman and Boutet de Monvel-Johannes Sjöstrand on Bergman kernel.
In the paper, they proved the existence of the Bergman kernel expansion directly, without using the deep result of Fefferman and Boutet de Monvel-Johannes Sjöstrand on Bergman kernel. Their methods also provide an effective way of computing all the coefficients.
In the paper, they proved the existence of the Bergman kernel expansion directly, without using the deep result of Fefferman and Boutet de Monvel-Johannes Sjöstrand on Bergman kernel. Their methods also provide an effective way of computing all the coefficients. Their methods can be generalized to the twisted case as well.
Result of Ross-Thomas

Julius Ross and Richard Thomas
Weighted Bergman kernels on Orbifolds
ArXiv: 0907.515 v2
Result of Ross-Thomas

Julius Ross and Richard Thomas
Weighted Bergman kernels on Orbifolds
ArXiv: 0907.515 v2

C^∞ convergence on orbifolds.
Motivations of seeking a complex geometric proof.
Motivations of seeking a complex geometric proof.

1. Give a purely complex geometric proof of the existence of the expansion;
Motivations of seeking a complex geometric proof.

1. Give a purely complex geometric proof of the existence of the expansion;
2. Give an explicit algorithm of the coefficients; more importantly, give the effective error estimates;
Motivations of seeking a complex geometric proof.

1. Give a purely complex geometric proof of the existence of the expansion;
2. Give an explicit algorithm of the coefficients; more importantly, give the **effective** error estimates; Bergman kernels on family of manifolds?
Motivations of seeking a complex geometric proof.

1. Give a purely complex geometric proof of the existence of the expansion;
2. Give an explicit algorithm of the coefficients; more importantly, give the effective error estimates; Bergman kernels on family of manifolds?
3. The expansion when the metrics are real analytic;
Motivations of seeking a complex geometric proof.

1. Give a purely complex geometric proof of the existence of the expansion;
2. Give an explicit algorithm of the coefficients; more importantly, give the effective error estimates; Bergman kernels on family of manifolds?
3. The expansion when the metrics are real analytic;
4. Orbifold Cases?
Motivations of seeking a complex geometric proof.

1. Give a purely complex geometric proof of the existence of the expansion;
2. Give an explicit algorithm of the coefficients; more importantly, give the effective error estimates; Bergman kernels on family of manifolds?
3. The expansion when the metrics are real analytic;
4. Orbiford Cases?
5. (less important but more difficult) A recursive formula for all coefficients?
The C^∞ convergence (C^0 convergence is proved in my paper “On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch expansion”, AJM 122, 2000.)
Technical Difficulties

1. The C^∞ convergence (C^0 convergence is proved in my paper “On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch expansion”, AJM 122, 2000.)

2. Effective error estimate.
Technical Difficulties

1. The C^∞ convergence (C^0 convergence is proved in my paper “On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch expansion”, AJM 122, 2000.)

2. Effective error estimate.

3. $\text{Hom}(E, E)$-valued objects.
Definition of Bergman kernel (vector bundle case)

Let S_1, \ldots, S_d be any basis of $H^0(M, E)$. Let $F = (F_{ij}) = (S_i, S_j)$.

Let P be the matrix such that $PFP^* = I$. If we write $S_i = \sum_{j=1}^r b_{ij} e_j$, then the Bergman kernel can be represented by $B = HB^* F^{-1} B$, where $B = (b_{ij})$ is a $d \times r$ matrix.

B is an $r \times r$ matrix, where r is the rank of E. H is the Hermitian metric of E. Zhiqin Lu, Dept. Math, UCI A complex geometric proof of TYZ expansion
Definition of Bergman kernel (vector bundle case)

Let S_1, \cdots, S_d be any basis of $H^0(M, E)$. Let

$$F = (F_{ij}) = (S_i, S_j).$$

Let P be the matrix such that $PFP^* = I$. If we write

$$S_i = \sum_{j=1}^{r} b_{ij} e_j,$$

then the Bergman kernel can be represented by

$$\mathfrak{B} = HB^* F^{-1} B,$$

where $B = (b_{ij})$ is a $d \times r$ matrix.
Definition of Bergman kernel (vector bundle case)

Let S_1, \cdots, S_d be any basis of $H^0(M, E)$. Let

$$ F = (F_{ij}) = (S_i, S_j). $$

Let P be the matrix such that $PFP^* = I$. If we write

$$ S_i = \sum_{j=1}^{r} b_{ij} e_j, $$

then the Bergman kernel can be represented by

$$ \mathcal{B} = HB^* F^{-1} B, $$

where $B = (b_{ij})$ is a $d \times r$ matrix. \mathcal{B} is an $r \times r$ matrix, where r is the rank of E. H is the Hermitian metric of E.
Important remark

For any linearly independent sections S_1, \cdots, S_t (subspace of $H^0(M, E)$), Bergman kernels are defined.
Reduction of the problem

For Bergman kernel of \(H^0(M, L^m \otimes E) \)
Reduction of the problem

For Bergman kernel of $H^0(M, L^m \otimes E)$

1. the C^∞ asymptotic expansion of $B^* F^{-1} B$
Reduction of the problem

For Bergman kernel of $H^0(M, L^m \otimes E)$

1. the C^∞ asymptotic expansion of $B^* F^{-1} B$
2. the C^∞ asymptotic expansion at one point
Reduction of the problem

For Bergman kernel of $H^0(M, L^m \otimes E)$

1. the C^∞ asymptotic expansion of $B^* F^{-1} B$
2. the C^∞ asymptotic expansion at one point
3. the C^0 asymptotic expansion at one point $(F_{PQ}^{-1} z^P \overline{z}^Q)$.
Reduction of the problem

For Bergman kernel of $H^0(M, L^m \otimes E)$

1. the C^∞ asymptotic expansion of $B^* F^{-1} B$
2. the C^∞ asymptotic expansion at one point
3. the C^0 asymptotic expansion at one point $(F_{PQ}^{-1} z^P \bar{z}^Q)$.
4. the expansion of the inverse of the metric matrix
Reduction of the problem

For Bergman kernel of $H^0(M, L^m \otimes E)$

1. the C^∞ asymptotic expansion of $B^* F^{-1} B$
2. the C^∞ asymptotic expansion at one point
3. the C^0 asymptotic expansion at one point ($F^{-1}_{PQ} z^P \bar{z}^Q$).
4. the expansion of the inverse of the metric matrix
5. Effective version of Ruan’s lemma.
Definition

We say a sequence of functions $f_m(x)$ has a C^μ asymptotic expansion, if there exist matrix-valued functions $a_0(x), \cdots, a_s(x), \cdots$ such that for any $s, \mu,$

$$\left\| f_m(x) - m^n \left(a_0(x) + \frac{a_1(x)}{m} + \cdots + \frac{a_s(x)}{m^s} \right) \right\|_{C^\mu} \leq \frac{C}{m^{s+1}},$$

where C is a constant independent to $m.$
Definition
We say a sequence of functions $f_m(x)$ has a C^μ asymptotic expansion at the point x_0, if there exist matrix-valued functions $a_0(x), \cdots, a_s(x), \cdots$ in a neighborhood of x_0 such that for any s, we have

$$\left| D^\mu \left(f_m(x) - m^n \left(a_0(x) + \frac{a_1(x)}{m} + \cdots + \frac{a_s(x)}{m^s} \right) \right) \right| (x_0) \leq \frac{C}{m^{s+1}},$$

where C is a constant independent to m and x_0. The derivative is taken with respect to a K-coordinate system.
Definition

In particular, we say $f_m(x)$ has a C^0 asymptotic expansion at the point x_0, if there exists matrices a_0, \cdots, a_s, \cdots such that

$$
|f_m(x) - m^n \left(a_0 + \frac{a_1}{m} + \cdots + \frac{a_s}{m^s}\right)| (x_0) \leq \frac{C}{m^{s+1}},
$$

where C is independent to m.

If a sequence of functions has a C^μ asymptotic expansion, then it has the C^μ asymptotic expansion at any point x_0.

Lemma

A sequence of functions f_m has a C^μ asymptotic expansion if and only if for every $\mu \geq 0$ and at each point $x_0 \in M$, f_m has a C^μ asymptotic expansion at x_0.
Definition of K-coordinates and K-frames

Definition
Let $p > 0$ be any positive integer. Let $x_0 \in M$ be a point. Let (z_1, \cdots, z_n) be a holomorphic coordinate system centered at x_0. Let $(g_{\alpha \overline{\beta}})$ be the Kähler metric matrix. If

$$g_{\alpha \overline{\beta}}(x_0) = \delta_{\alpha \beta},$$

$$\frac{\partial^{p_1+\cdots+p_n} g_{\alpha \overline{\beta}}}{\partial z_1^{p_1} \cdots \partial z_n^{p_n}}(x_0) = 0$$

for $\alpha, \beta = 1, \cdots, n$ and any nonnegative integers (p_1, \cdots, p_n) with $p > p_1 + \cdots + p_n \neq 0$. Then we call the coordinate system a K-coordinate system of order p.
Definition
Let e_L be a local holomorphic frame of L at x_0. If for $p > 0$, the local representation function a of the Hermitian metric h_L satisfies

$$a(x_0) = 1, \quad \frac{\partial^{p_1 + \cdots + p_n} a}{\partial z_1^{p_1} \cdots \partial z_n^{p_n}}(x_0) = 0$$ (1)

for any nonnegative integers (p_1, \cdots, p_n) with $p > p_1 + \cdots + p_n \neq 0$. Then we call e_L is a K-frame of order p. If a is analytic, then again we can take $p = +\infty$.
Under K-coordinates, the coefficients of the Taylor expansions of the metrics only contain the curvatures and their derivatives.
Let $P = (p_1, \cdots, p_n)$ be a multiple index and let $1 \leq j \leq r$. Define the lexicographical order on the set of (P, j)’s. That is, $(P, j) < (Q, k)$ if

1. $\sum p_i < \sum q_i$, or
2. $p_1 = q_1, \cdots, p_\ell = q_\ell$ but $p_{\ell+1} < q_{\ell+1}$ for some $0 \leq \ell \leq n - 1$, or
3. $j < k$.

Such an order gives rise to the function $P = P(j)$. For example, $P(1) = ((0, \cdots, 0), 1)$, $P(2r + 2) = ((0, 1, \cdots, 0), 2)$, etc.
Definition

Let $S_1, \cdots, S_k, S_{k+1}, \cdots, S_d$ be a basis of $H^0(M, L^m \otimes E)$. We say that it is a regular basis at x_0 of order μ, if under the local K-coordinates at x_0

1. for $1 \leq j \leq k$, $S_j(z) = z^{P(j)} + o(|z|^\mu)$;
2. for $j > k$, $S_j(z) = o(|z|^\mu)$.

Moreover, the (i, j)-th entry of F^{-1} has a C^0 asymptotic expansion at x_0.
Lemma

If a regular basis exists, then the Catlin-Zelditch’s result is valid.

Proof. The Taylor expansion for the smooth vector-valued function H gives the asymptotic expansion. Thus in order to prove the result, we only need to prove the existence of the C^μ expansion of $B^* F^{-1} B$. It is not hard to see that if

$$\frac{\partial |P| + |Q| \mathfrak{B}}{\partial z^P \partial \bar{z}^Q}$$

has the C^0 asymptotic expansion at x_0 for all $|P| + |Q| \leq \mu$.

\[\square\]
Peak Sections

1, z, z^2, ⋅⋅⋅, z^p are the “peak” functions on \(\mathbb{C} \) with respect to the norm \(e^{-|z|^2} \).
Peak Sections

1, z, z^2, \cdots, z^p are the “peak” functions on \(\mathbb{C} \) with respect to the norm \(e^{-|z|^2} \).

Graphs of \(f_i(x) = x^i e^{-x} \) for \(i = 1, \cdots, 4 \).
Peak Sections

1, z, z^2, \cdots, z^p are the “peak” functions on \mathbb{C} with respect to the norm $e^{-|z|^2}$.

Graphs of $f_i(x) = x^i e^{-x}$ for $i = 1, \cdots, 4$.
Peak Sections

1, z, z^2, \cdots, z^p are the “peak” functions on \(\mathbb{C} \) with respect to the norm \(e^{-|z|^2} \).

Graphs of \(f_i(x) = x^i e^{-x} \) for \(i = 1, \cdots, 4 \).

\[x^i e^{-x} \text{ goes to zero but not uniformly.} \]
In \mathbb{C}^n, $z_1^{\alpha_1} \cdots z_n^{\alpha_n}$ are peak sections for the norm $e^{-|z|^2}$.
In \mathbb{C}^n, $z_1^{\alpha_1} \cdots z_n^{\alpha_n}$ are peak sections for the norm $e^{-|z|^2}$.

On the polarized manifold, the fact that $c_1(L) = \omega$ implies that in a neighborhood of x_0, the metric is close to $e^{-|z|^2}$.

$$(\partial \bar{\partial} \log e^{-|z|^2} = \sum_j dz_j \wedge d\bar{z}_j)$$
In \mathbb{C}^n, $z_1^{\alpha_1} \cdots z_n^{\alpha_n}$ are peak sections for the norm $e^{-|z|^2}$.

On the polarized manifold, the fact that $c_1(L) = \omega$ implies that in a neighborhood of x_0, the metric is close to $e^{-|z|^2}$.

$$(\partial \bar{\partial} \log e^{-|z|^2} = \sum_j dz_j \wedge d\bar{z}_j)$$

The metric on L^m is close to $e^{-m|z|^2}$.
In \mathbb{C}^n, $z_1^{\alpha_1} \cdots z_n^{\alpha_n}$ are peak sections for the norm $e^{-|z|^2}$.

On the polarized manifold, the fact that $c_1(L) = \omega$ implies that in a neighborhood of x_0, the metric is close to $e^{-|z|^2}$.

$$\left(\partial \bar{\partial} \log e^{-|z|^2} = \sum_j dz_j \wedge d\bar{z}_j \right)$$

The metric on L^m is close to $e^{-m|z|^2}$. After rescaling

$$\left\{ |z| \leq \frac{\log m}{\sqrt{m}} \right\}, e^{-m|z|^2} \leftrightarrow \left\{ |z| \leq \log m \right\}, e^{-|z|^2}.$$
Theorem (Peak Section Theorem)

We can find holomorphic sections $S \in H^0(M, L^m)$ such that

1. in a neighborhood of x_0, S is close to $z_1^{\alpha_1} \cdots z_n^{\alpha_n}$
2. Outside the neighborhood, S is very small.

Here $\sum \alpha_j < \varepsilon \log m$.
Theorem

Let S_1, \ldots, S_k be peak sections $k = [\varepsilon \log m]$. Let $\mathcal{B}_\text{peak}^k$ be the Bergman kernel with respect to the peak sections S_1, \ldots, S_k. Then

1. $\mathcal{B}_\text{peak}^k$ has an C^∞ asymptotic expansion
2. The expansion stables to the TYZ expansion:

$$\left\| \mathcal{B}(x) - \mathcal{B}_\text{peak}^k \right\|_{C^\mu} \leq \frac{C}{m^{\varepsilon_0} \log k}.$$
W.D. Ruan’s Lemma

Lemma

Let S_P be peak sections. Let T be another section of L^m.

Near x_0, $T = f e^m_L$ for a holomorphic function f. When we say T’s Taylor expansion at x_0, we mean the Taylor expansion of f at x_0 under the coordinate system (z_1, \ldots, z_n).

1. If z^P is not in T’s Taylor expansion at 0, then

$$(S_P, T) = O \left(\frac{1}{m} \right) \|S\| \cdot \|T\|.$$

2. If T contains terms z^Q for $|Q| \geq |P| + \sigma$ in the Taylor expansion, then

$$(S_P, T) = O \left(\frac{1}{m^{1+\frac{\sigma}{2}}} \right) \|S\| \cdot \|T\|.$$
We worked out the effective version of Ruan’s Lemma.
Let S_{k+1}, \cdots, S_d be an orthonormal basis of the space $V_{s+1} = \{ T \in H^0(M, L^m \otimes E) \mid T \text{ vanishes at } x_0 \text{ of order at least } s + 1 \}$.

Let S_1, \cdots, S_k be peak sections.
Define the matrix A_{ij} to be

$$
\delta_{ij} - (S_i, S_j)
$$
Define the matrix A_{ij} to be

$$\delta_{ij} - (S_i, S_j)$$

Then we have

$$F_1 = I - A.$$

By our effective Ruan's Lemma, we have

$$||A_{\alpha,\beta}|| \leq \frac{C}{m^{1+|\alpha-\beta|/2}}.$$

(This is a little over-simplified version)
We represent $F_1^{-1} = (C_{\alpha\beta})$ as a block matrix using the same partition as in the matrix A. Using the expansion

$$F^{-1} = I + A + A^2 + \cdots,$$

for any fixed (α_0, β_0), we have

$$C_{\alpha\beta} - I = \sum_{k=1}^{\infty} \sum_{i_1, \cdots, i_{k-1}} A_{\alpha_0 i_1} A_{i_1 i_2} \cdots A_{i_{k-1} \beta_0}.$$

We have

$$\left\| \sum_{k=s+1}^{\infty} \sum_{i_1, \cdots, i_{k-1}} A_{\alpha_0 i_1} A_{i_1 i_2} \cdots A_{i_{k-1} \beta_0} \right\| \leq \frac{C}{m^{s+1}}.$$
Similarly, we consider the terms

$$\sum_{k=1}^{s} \sum_{\text{some } i_j=s+1} A_{\alpha_0 i_1} A_{i_1 i_2} \cdots A_{i_{k-1} \beta_0}.$$

If some $i_j = s + 1$, we must have

$$|\alpha_0 - i_1| + |i_1 - i_2| + \cdots + |i_{k-1} - \beta_0| \geq 2s + 2 - \alpha_0 - \beta_0.$$

Thus we have

$$\left\| \sum_{k=1}^{s} \sum_{\text{some } i_j=s+1} A_{\alpha_0 i_1} A_{i_1 i_2} \cdots A_{i_{k-1} \beta_0} \right\| \leq \frac{C}{m^{s+1 - \frac{1}{2}(\alpha_0 + \beta_0)}}.$$
Real analytic case

Theorem (Liu-L)

Assume that the metrics are real analytic. Then

1. The TYZ expansion

\[\sum_{j=0}^{\infty} \frac{a_j}{m^j} \]

is convergent for \(m \) large.

2. \[\| \mathfrak{B}(x) - m^n \sum_{j=0}^{\infty} \frac{a_j}{m^j} \|_{C^\mu} \leq C m^{-\varepsilon (\log m)^{1/n}}. \]

(Fefferman-Boutet de Monvel-Sjöstrand’s method possible)
The technical heart is that, if we work harder, we can have

\[\| \mathfrak{B}(x) - m^n \sum_{j=0}^{N} \frac{a_j}{m^j} \|_{C^\mu} \leq \frac{C'^N}{m^{N+1}}, \]

where \(N \) is up to \(\epsilon \log m \) and \(C' \) is independent to \(N \).
The technical heart is that, if we work harder, we can have

$$\| \mathfrak{B}(x) - m^n \sum_{j=0}^{N} \frac{a_j}{m_j} \|_{C^\mu} \leq \frac{C'^N}{m^{N+1}},$$

where N is up to $\varepsilon \log m$ and C' is independent to N. By setting $N = [\varepsilon \log m]$, we can get the result.
The orbifold case

Assume M is an orbifold with only one orbifold singularity point. Assume that the local group is \mathbb{Z}_2. Such an orbifold may not exist. Just use it as an example.
The orbifold case

Assume M is an orbifold with only one orbifold singularity point. Assume that the local group is \mathbb{Z}_2. Such an orbifold may not exist. Just use it as an example.

It is not possible to have the C^∞ convergence of the Bergman kernel at the orbifold point. What Ross-Thomas did was to “average” several Bergman kernels.
The orbifold case

Assume M is an orbifold with only one orbifold singularity point. Assume that the local group is \mathbb{Z}_2. Such an orbifold may not exist. Just use it as an example.

It is not possible to have the C^∞ convergence of the Bergman kernel at the orbifold point. What Ross-Thomas did was to “average” several Bergman kernels.
In terms of peak sections, this is clear. The set of peak sections can be decomposed into two parts: \(\{ z^{2k+1} \} \) and \(\{ z^{2k} \} \) and these two sets are perpendicular to each other. We can make the Begman kernel for each of them. The sum of the Bergman kernels is equal to the Bergman kernel of the local uniformization. Since the Bergman kernel expansion can be localized, using the ordinary method on manifold, we can recover the result of Ross-Thomas.
Thank you!