BS in Applied and Computational Mathematics 

Data Science Concentration Requirements

 

Lower Division Requirements 

A. Complete the following Lower-Division Requirements: 

Math 2A - Single-Variable Calculus I

Math 2B - Single-Variable Calculus II

Math 2D - Multivariable Calculus I

Math 2E - Multivariable Calculus II

Math 3A - Introduction to Linear Algebra

Math 3D - Elementary Differential Equations

Math 9 - Introduction to Programming for Numerical Analysis

Math 13 - Introduction to Abstract Mathematics

 

B. Complete the following lower-division courses:

Math 10 - Introduction to Programming in Data Science

Stats 7 - Basic Statistics

Physics 7C - Classical Mechanics

 

 

Upper Division Requirements

A. Complete the following Upper-Division Requirements:

Math 105A/105LA - Numerical Analysis I & Lab

Math 105B/105LB - Numerical Analysis II & Lab

Math 110A - Optimization I

Math 110B - Optimization II

Math 121A - Linear Algebra I

Math 121B - Linear Algebra II

Math 130A - Probability I

Math 130B - Probability II

Math 140A - Elementary Analysis I

Math 140B - Elementary Analysis II

 

B. Complete five electives from the below list. At least least one course must be outside of Mathematics; other options may be chosen in consultation with the Data Science concentration advisor: 

Math 115 - Mathematical Modeling

Math 117 - Dynamical Systems

Math 118 - Theory of Differential Equations

Math 120B - Introduction to Abstract Algebra: Rings and Fields

Math 130C - Stochastic Processes

Math 134A - Fixed Income

Math 134B - Mathematics of Financial Derivatives

Math 140C - Analysis in Several Variables

Math 147 - Complex Analysis

Math 162A - Introduction to Differential Geometry I

Math 162B - Introduction to Differential Geometry II

Math 173A - Introduction to Cryptology I

Math 173B - Introduction to Cryptology II

Math 175 - Combinatorics

Math 176 - Mathematics of Finance

Math 178 - Mathematical Machine Learning

Stats 110 - Statistical Methods for Data Analysis I

Stats 111 - Statistical Methods for Data Analysis II

Compsci 171 - Introduction to Artificial Intelligence

Compsci 172B - Neural Networks and Deep Learning

Compsci 177 - Applications of Probability in Computer Science

Compsci 178 - Machine Learning and Data-Mining

Compsci 179 - Algorithms for Probabilistic and Deterministic Graphical Models

Compsci 183 - Introduction to Computational Biology

Compsci 184A - Artificial Intelligence in Biology and Medicine

Compsci 184C - Computational Systems Biology