Chris Davis




Thursday, April 2, 2009 - 3:00pm


RH 306

The aim of the talk is to describe the overconvergent de Rham-Witt complex. It is a subcomplex of the de Rham-Witt complex and it can be used to compute Monsky-Washnitzer cohomology for affine varieties, and rigid cohomology in general. (All our varieties are over a perfect field of characteristic $p$.)

We will begin by reviewing Monsky-Washnitzer cohomology and the de Rham-Witt complex. Next we will define overconvergent Witt vectors and then the overconvergent de Rham-Witt complex. As time permits, we will say something about the proof of the comparison theorem between Monsky-Washnitzer cohomology and overconvergent de Rham-Witt ohomology.

This is joint work with Andreas Langer and Thomas Zink.