Professor Steve Zelditch


Johns Hopkins


Wednesday, April 8, 2009 - 2:00pm


RH 306

An old result of Kac-Hammersley says that the complex zeros of a Gaussian
random polynomial \sum_{j = 0}^N a_j z^j with i.i.d. normal coefficients a_j, concentrate
on the unit circle. This seems counter intuitive at first, since the zeros could be anywhere.
We will explain this paradox and show that there is a very general result that empirical measures
of complex zeros tend to `equilibrium measures'. We then give a large deviations principle showing
that the probability of deviation from equilibrium measure is exponentially small.