Douglass Haessig


University of Rochester


Tuesday, March 10, 2015 - 2:00pm to 3:00pm




Motivated from his p-adic study of the variation of the zeta function as
the variety moves through a family, Dwork conjectured that a new type of
L-function, the so-called unit root L-function, was always p-adic
meromorphic. In the late 1990s, Wan proved this using the theory of
sigma-modules, demonstrating that unit root L-functions have structure.
Little more is known.

This talk is concerned with unit root L-functions coming from families of
exponential sums. In this case, we demonstrate that Wan's theory may be
used to extend Dwork's theory -- including p-adic cohomology -- to these
L-functions. To illustrate the technique, the unit root L-function of the
Kloosterman family is studied in depth.