Wei Ho


University of Michigan


Tuesday, May 10, 2016 - 2:00pm to 3:00pm


RH 340P

In the last several years, there has been significant theoretical progress on understanding the average rank of all elliptic curves over Q, ordered by height, led by work of Bhargava-Shankar. We will survey these results and the ideas behind them, as well as discuss generalizations in many directions (e.g., to other families of elliptic curves, higher genus curves, and higher-dimensional varieties) and some corollaries of these types of theorems. We will also describe recently collected data on ranks and Selmer groups of elliptic curves (joint work with J. Balakrishnan, N. Kaplan, S. Spicer, W. Stein, and J. Weigandt).