Yesim Demiroglu Karabulut


Harvey Mudd


Thursday, September 26, 2019 - 3:00pm to 4:00pm



RH 306
In this talk, we first present some elementary new proofs (using Cayley digraphs and spectral graph theory) for Waring's problem over finite fields, and explain how in the process of re-proving these results, we obtain an original result that provides an analogue of Sárközy's theorem in the finite field setting (showing that any subset $E$ of a finite field $\Bbb F_q$ for which $|E| > \frac{qk}{\sqrt{q - 1}}$ must contain at least two distinct elements whose difference is a $k^{\text{th}}$ power). Once we have our results for finite fields, we apply some classical mathematics to extend our Waring's problem results to the context of general (not necessarily commutative) finite rings. In the second half of our talk, we present sum-product formulas related to matrix rings over finite fields, which can again be proven using Cayley digraphs and spectral graph theory in an efficient way.