Speaker: 

Burak Hatinoglu

Institution: 

UCSB

Time: 

Friday, April 8, 2022 - 1:00pm

Host: 

Location: 

RH 305

 

Abstract: This talk will be on the spectral properties of elastic beam Hamiltonian defined on periodic hexagonal lattices. These continua are constructed out of Euler-Bernoulli beams, each governed by a scalar valued fourth-order Schrödinger operator equipped with a real periodic symmetric potential. Unlike the second-order Schrödinger operator commonly applied in quantum graph literature, here the self-adjoint vertex conditions encode geometry of the graph by their dependence on angles at which edges are met. I will firstly consider this Hamiltonian on a special equal-angle lattice, known as graphene or honeycomb lattice. I will also discuss spectral properties for the same operator on lattices in the geometric neighborhood of graphene. This talk is based on a recent joint work with Mahmood Ettehad (University of Minnesota), https://arxiv.org/pdf/2110.05466.pdf