A hierarchy of supercompactness measures in ZF+DC

Speaker: 

Nam Trang

Institution: 

UC Berkeley

Time: 

Thursday, May 24, 2012 - 4:00pm

Host: 

Location: 

RH 340P

For each \alpha < \omega_1, let

X_\alpha = \{f : \omega^\alpha \rightarro\powerset_{\omega_1}(\mathbb{R})| f is increasing and continuous}

and \mu_\alpha be a normal fine measure on X_\alpha. We identify X_0 with \powerset_{\omega_1}(R). Martin and Woodin independently showed that these measures exist assuming (ZF + DC_\mathbb{R}) + AD + Every set is Suslin (\mu_0's existence was originally shown by Solovay from AD_\mathbb{R}). We sketch the proof of the derived model construction giving the existence of these measures (+ AD^+) from large cardinals and the Prikry forcing construction which gives back the exact large cardinal strength from AD^+ and the measure. If time allows, we will survey some theorems on the structure theory of the model L(\mathbb{R},\mu_\alpha) assuming the model satisfies \Theta > \omega_2 and \mu_\alpha is a normal fine measure on X_\alpha. Here the main theorem is that our assumption implies L(\mathbb{R},\mu_\alpha) satisfies AD^+

A bad scale and the failure of SCH at $\aleph_\omega$ III

Speaker: 

Dima Sinapova

Institution: 

UCI

Time: 

Monday, May 21, 2012 - 4:00pm

Host: 

Location: 

RH 440R

Starting from a supercompact, we construct a model in which SCH fails at $\aleph_\omega$ and there is a bad scale at $\aleph_\omega$. The existence of a bad scale implies the failure of weak square. The construction uses two Prikry type forcings defined in different ground models and a suitably defined projection between them. This is joint work with Spencer Unger.

Iterated forcing at successors of singular cardinals II

Speaker: 

James Cummings

Institution: 

Carnegie Mellon University

Time: 

Tuesday, May 15, 2012 - 4:00pm to 5:30pm

Host: 

It is hard to find analogues of MA in which aleph_1 is replaced by the successor of a singular cardinal because
a) The consequences of MA-like axioms have large consistency strength
b) There is no satisfactory analogue of finite support ccc iteration

Dzamonja and Shelah found an ingenious approach to proving results of this general kind. I will outline their work and then describe some recent joint work with Dzamonja and Morgan, aimed at bringing results of this kind down to aleph_{omega+1}

Iterated forcing at successors of singular cardinals I

Speaker: 

James Cummings

Institution: 

Carnegie Mellon University

Time: 

Monday, May 14, 2012 - 4:00pm to 5:30pm

Host: 

It is hard to find analogues of MA in which aleph_1 is replaced by the successor of a singular cardinal because
a) The consequences of MA-like axioms have large consistency strength
b) There is no satisfactory analogue of finite support ccc iteration

Dzamonja and Shelah found an ingenious approach to proving results of this general kind. I will outline their work and then describe some recent joint work with Dzamonja and Morgan, aimed at bringing results of this kind down to aleph_{omega+1}

A bad scale and the failure of SCH at $\aleph_\omega$ II

Speaker: 

Dima Sinapova

Institution: 

UCI

Time: 

Monday, May 7, 2012 - 4:00pm to 5:30pm

Host: 

Starting from a supercompact, we construct a model in which SCH fails at $\aleph_\omega$ and there is a bad scale at $\aleph_\omega$. The existence of a bad scale implies the failure of weak square. The construction uses two Prikry type forcings defined in different ground models and a suitably defined projection between them. This is joint work with Spencer Unger.

A bad scale and the failure of SCH at $\aleph_\omega$ I

Speaker: 

Dima Sinapova

Institution: 

UCI

Time: 

Monday, April 23, 2012 - 4:00pm to 5:30pm

Host: 

Location: 

RH 440R

Starting from a supercompact, we construct a model in which SCH fails at $\aleph_\omega$ and there is a bad scale at $\aleph_\omega$. The existence of a bad scale implies the failure of weak square. The construction uses two Prikry type forcings defined in different ground models and a suitably defined projection between them. This is joint work with Spencer Unger.

Obtaining stationary reflecion at small singulars cardinal via Prikry type forcings I

Speaker: 

Zachary Faubion

Institution: 

UCI

Time: 

Monday, April 16, 2012 - 4:00pm to 5:30pm

Host: 

Location: 

RH 440R

Given a regular cardinal $\kappa$, an uncountably cofinal ordinal $\nu<\kappa$ is a reflection point of the stationry set $S\subseteq\kappa$ just in the case where $S\cap\alpha$ is stationary in $\alpha$. Starting from ininitely many supercompact cardinals, Magidor constructed a model of set theory where every stationary $S\subseteq\aleph_{\omega+1}$ has a reflection point. In this series of talks we present a construction of a model of set theory where we obtain a large amount of stationary reflection (although not full) using a significantly weaker large cardinal hypothesis. We start from a quasicompact (quasicompactness is a large cardinal hypothesis significantly weaker than any nontrivial variant of supercompactness) cardinal $\kappa$ and use modified Prikry forcing to turn $\kappa$ into $\aleph_{\omega+1}$. We then show that in the resulting model every stationray $S\subeteq\aleph_{\omega+1}$ not concentrating on ordinals of ground model cofinality $\kappa$ has a reflection point.

Pages

Subscribe to RSS - Logic Set Theory