Speaker: 

Hao Jia

Institution: 

University of Chicago

Time: 

Thursday, January 14, 2016 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

The study of dynamics of energy critical wave equations has seen remarkable progresses in recent years, resulting in deeper understanding of the singularity formation, soliton dynamics, and global large data theory. I will firstly review some of the landmark results, with emphasis on the channel of energy inequalities discovered by Duyckaerts, Kenig and Merle. Applications in the study of global dynamics of defocusing energy critical wave equation with a trapping potential in the radial case will be presented in some detail. We remark that the channel of energy argument provides crucial control on the global dynamics of the solution, and seems to be the only tool currently available to measure dispersion in this context, when we do not assume any smallness condition. The channel of energy argument is however sensitive to dimensions, and in higher dimensions, it is less powerful. We will mention a new approach to eliminate the dispersive energy when the channel of energy argument fails. Lastly, a new Morawetz estimate in the context of focusing energy critical wave equations will be discussed. This estimate allows us to study the singularity formation in more details in the non-radial case, without size restriction. As a result, we can characterize the solution along a sequence of times approaching the singular time, up to every nontrivial scale, as modulated solitons. 

Part of the talk is based on joint works with C. Kenig, and with B.P. Liu, W. Schlag, G.X. Xu.