Nam Le


Indiana University Bloomington


Friday, March 15, 2019 - 3:00pm to 4:00pm



RH 440R

Abreu type equations are fully nonlinear, fourth order, geometric PDEs which can be viewed as systems of two second order PDEs, one is a Monge-Ampere equation and the other one is a linearized Monge-Ampere equation. They first arise in the constant scalar curvature problem in differential geometry and in the affine maximal surface equation in affine geometry. This talk discusses the solvability and convergence properties of second boundary value problems of singular, fourth order equations of Abreu type arising from approximation of convex functionals whose Lagrangians depend on the gradient variable, subject to a convexity constraint. These functionals arise in different scientific disciplines such as Newton's problem of minimal resistance in physics and the Rochet-Choné model of monopolist's problem in economics. This talk explains how minimizers of the 2D Rochet-Choné model can be approximated by solutions of singular Abreu equations.