On the linear forced Euler and Navier-Stokes equations: damping and modified scattering

Speaker: 

Christian Zillinger

Institution: 

USC

Time: 

Friday, April 26, 2019 - 3:00pm to 3:50pm

Host: 

Location: 

RH 440R

We study the long-time asymptotic behavior of the linearized Euler and nonlinear Navier-Stokes equations close to Couette flow. As a main result we show that suitable forcing breaks asymptotic stability results at the level of the vorticity, but that solutions never the less exhibit convergence of the velocity field. Thus, here linear inviscid damping persists despite instability of the vorticity equations.

Geometry of real hypersurfaces meets Subelliptic PDEs

Speaker: 

Dmiti Zaitsev

Institution: 

Trinity College Dublin

Time: 

Friday, March 1, 2019 - 3:00pm to 3:50pm

Host: 

Location: 

RH440R

In his seminal work from 1979,
Joseph J. Kohn invented
his theory of multiplier ideal sheaves
connecting a priori estimates for the d-bar problem
with local boundary invariants
constructed in purely algebraic way.

I will explain the origin and motivation of the problem,
and how Kohn's algorithm reduces it
to a problem in local geometry
of the boundary of a domain.

I then present my recent work with Sung Yeon Kim
based on the technique of jet vanishing orders,
and show how it can be used to
control the effectivity of multipliers in Kohn's algorithm,
subsequently leading to precise a priori estimates.

Singular Abreu equations and minimizers of convex functionals with a convexity constraint

Speaker: 

Nam Le

Institution: 

Indiana University Bloomington

Time: 

Friday, March 15, 2019 - 3:00pm to 4:00pm

Host: 

Location: 

RH 440R

Abreu type equations are fully nonlinear, fourth order, geometric PDEs which can be viewed as systems of two second order PDEs, one is a Monge-Ampere equation and the other one is a linearized Monge-Ampere equation. They first arise in the constant scalar curvature problem in differential geometry and in the affine maximal surface equation in affine geometry. This talk discusses the solvability and convergence properties of second boundary value problems of singular, fourth order equations of Abreu type arising from approximation of convex functionals whose Lagrangians depend on the gradient variable, subject to a convexity constraint. These functionals arise in different scientific disciplines such as Newton's problem of minimal resistance in physics and the Rochet-Choné model of monopolist's problem in economics. This talk explains how minimizers of the 2D Rochet-Choné model can be approximated by solutions of singular Abreu equations.

Mean field games on graphs

Speaker: 

Chenchen Mu

Institution: 

UCLA

Time: 

Friday, February 22, 2019 - 3:00pm to 4:00pm

Host: 

Location: 

RH 440R

Mean field game theory is the study of the limit of Nash
equilibria of differential games when the number of players tends to infinity. It
was introduced by J.-M. Lasry and P.-L. Lions, and independently by P.
Caines, M. Huang and R. Malhame. A fundamental object in the theory is the
master equation, which fully characterizes the limit equilibrium. In this
talk, we will introduce Mean field game and master equations on graphs. We will
construct solutions to both equations and link them to the solution to
a Hamilton-Jacobi equation on graph.

TBA

Speaker: 

Le Hai Khoi

Institution: 

Nanyang Technological University, Singapore

Time: 

Friday, February 15, 2019 - 3:00pm to 3:50pm

Host: 

Location: 

RH440R

This is a joint Nonlinear PDEs seminar with Analysis seminar

Bergman-Einstein metrics on Strongly pseudoconvex domains in a complex space.

Speaker: 

Xiaojun Huang

Institution: 

Rutgers University

Time: 

Friday, November 16, 2018 - 3:00pm to 3:50pm

Host: 

Location: 

RH440R

I will give a proof of S.Y.  Cheng's conjecture  that a bounded strongly pseudoconvex domain in C^n has  its Bergman metric being Einstein if and only if it is holomorphically equivalent to the ball.

Pages

Subscribe to RSS - Nonlinear PDEs