Igor Krasovsky


Imperial College


Thursday, November 4, 2021 - 4:00pm



RH 306

We will discuss the critical almost Mathieu operator: Azbel/Hofstadter/Harper model of an electron on the square lattice in a magnetic field. When the commensurability parameter between the lattice and the magnetic field is irrational, the spectrum of the model is a zero-measure Cantor set and its Hausdorff dimension is not larger than 1/2. We will emphasize the significance of the two-dimensionality of the problem, which was used in recent work of the speaker with S. Jitomirskaya. We will also discuss some similarities with integrable two-dimensional statistical models: the Ising model and the dimer problem.