Speaker: 

Karl Zieber

Institution: 

UCI

Time: 

Tuesday, October 21, 2025 - 1:00pm to 2:00pm

Host: 

Location: 

RH 340N

Abstract: Furstenberg’s theorem for random matrix products has been a key tool in many contexts, including mathematical physics. Of particular interest is the 1-dimensional Anderson model of electron diffusion in random media. In this talk, we will discuss how to apply a version of Furstenberg’s theorem where matrices which are independent but not necessarily identically distributed (non-stationary). In particular, we will discuss how to prove spectral and dynamical localization in the non-stationary Anderson model with unbounded potentials using this version of Furstenberg’s theorem.