Speaker:
Karl Zieber
Institution:
UCI
Time:
Tuesday, October 21, 2025 - 1:00pm to 2:00pm
Host:
Location:
RH 340N
Abstract: Furstenberg’s theorem for random matrix products has been a key tool in many contexts, including mathematical physics. Of particular interest is the 1-dimensional Anderson model of electron diffusion in random media. In this talk, we will discuss how to apply a version of Furstenberg’s theorem where matrices which are independent but not necessarily identically distributed (non-stationary). In particular, we will discuss how to prove spectral and dynamical localization in the non-stationary Anderson model with unbounded potentials using this version of Furstenberg’s theorem.
