Speaker: 

Netanel Levi

Institution: 

UCI

Time: 

Monday, February 2, 2026 - 12:00pm to 1:00pm

Location: 

RH 340N

Abstract: In this lecture, we will present several dynamical and fractal-dimensional ways of characterizing the spectral measures of Schrödinger operators, such as Rajchman behavior and Hausdorff/packing dimensions, and discuss the extent to which these properties are stable under rank-one perturbations.
We begin with the concrete setting of half-line Schrödinger operators, where a theorem of Gordon shows that generic rank-one perturbations eliminate pure point spectrum, ruling out the most extreme dynamical and dimensional behavior. I will then describe constructions demonstrating that properties only slightly weaker than pure point spectrum can, in fact, be entirely stable: for certain sparse half-line models, both packing-dimension-zero and non-Rajchman behavior persist for every rank-one perturbation.
In the second part, we examine how spectral dimensions behave when passing from the whole line to the half-line. I will present an operator whose spectral measure on the line has Hausdorff dimension one, whereas every half-line restriction - under any boundary condition - has dimension zero, even though the two settings differ only by a finite-rank perturbation.