Dissipation and high disorder

Speaker: 

Michael Cranston

Institution: 

UCI

Time: 

Tuesday, November 18, 2014 - 11:00am to 12:00pm

Location: 

306 RH

We show that the total mass, i.e. the sum over all points in the d-dimensional integer lattice of the solution to the parabolic Anderson model with initial function the point mass at the origin goes to zero in the high disorder regime. This talk is basedon joint work with L. Chen, D. Khoshnevisan, and K. Kim.

Decaying oscillatory perturbations of periodic Schr\"odinger operators.

Speaker: 

Darren Ong

Institution: 

U of Oklahoma

Time: 

Thursday, January 8, 2015 - 2:00pm

Location: 

rh 340

 

Abstract:
 We consider decaying oscillatory perturbations of periodic Schr\"odinger
 operators on the half line. More precisely, the perturbations we study
 satisfy a generalized bounded variation condition at infinity and an $L^p$
 decay condition. We show that the absolutely continuous spectrum is
 preserved, and give bounds on the Hausdorff dimension of the singular part
 of the resulting perturbed measure. Under additional assumptions, we
 instead show that the singular part embedded in the essential spectrum is
 contained in an explicit countable set. Finally, we demonstrate that this
 explicit countable set is optimal. That is, for every point in this set
 there is an open and dense class of periodic Schr\"odinger operators for
 which an appropriate perturbation will result in the spectrum having an
 embedded eigenvalue at that point.

Anomalous Lieb-Robinson Bounds in an XY Spin Chain

Speaker: 

Marius Lemm

Institution: 

Caltech

Time: 

Thursday, January 22, 2015 - 2:00pm

Location: 

RH 340P

The classical Lieb-Robinson bounds provide control over the speed of
propagation in quantum spin systems. In analogy to relativistic systems,
they establish a ``light cone'' $x \leq vt$ outside of which commutators
of initially localized observables are exponentially small. We consider an
XY spin chain in a quasiperiodic magnetic field and prove a new anomalous
Lieb-Robinson bound which features the modified light cone $x \leq
vt^\alpha$ for some $0<\alpha<1$. In fact, we can characterize $\alpha$
exactly as the upper transport exponent of a one-body Schr\"odinger
operator. This may be interpreted as a rigorous proof of anomalous quantum
many-body transport. Joint work with David Damanik, Milivoje Lukic and
William Yessen.

Declarative Multiscale Modeling for Computational Biology

Speaker: 

Eric Mjolsness

Institution: 

Departments of Computer Science and Mathematics, UC Irvine

Time: 

Monday, November 17, 2014 - 4:00pm to 5:00pm

Host: 

Location: 

RH306

Mathematical computational biology (MCB) has proven fruitful for all three fields:
mathematics, computation, and biology. One approach to the intersection begins
with symbolic representations of models, so that high-level abstractions and
advantageous problem transformations can be applied computationally before
good numerical methods are called in to do the heavy work of simulation and optimization.
This is the potential advantage of “declarative” modeling. It opens up further connections
between applied mathematics, artificial intelligence (including current trends in hybrid
logical/statistical inference), and foundational mathematics including logic and type theory.
I will illustrate the possibilities with recent work in complex, multiscale computational
biology  including signal transduction in synapses and gene regulation/signaling networks
in  developmental biology, by means of stochastic model reduction, enriched graphical
models expressed using computer algebra, and declarative modeling languages for
multiscale heterogeneous dynamics.

A higher index theorem for proper cocompact actions

Speaker: 

Xiang Tang

Institution: 

Washington University

Time: 

Tuesday, March 10, 2015 - 4:00pm

Location: 

RH 306

In this talk I will describe a cohomological formula for a higher
index pairing between invariant elliptic differential operators and
differentiable group cohomology classes. This index theorem generalizes the
Connes-Moscovici L^2-index theorem and its variants. This is joint work with
Markus Pflaum and Hessel Posthuma.

Continued fraction digit averages and Maclaurin's inequalities

Speaker: 

jake Wellens

Institution: 

Caltech

Time: 

Thursday, December 4, 2014 - 2:00pm

Location: 

rh 340p

A classical result of Khinchin says that for almost all real numbers α, the geometric mean of the first n digits ai(α) in the continued fraction expansion of α converges to a number K ≈ 2.6854520 . . . (Khinchin’s constant) as n → ∞. On the other hand, for almost all α, the arithmetic mean of the first n continued fraction digits ai(α) approaches infinity as n → ∞. There is a sequence of refinements of the AM-GM inequality, known as Maclaurin’s inequalities, relating the 1/kthpowers of the kth elementary symmetric means of n numbers for 1 ≤ k ≤ n. On the left end (when k = n) we have the geometric mean, and on the right end (k = 1) we have the arithmetic mean. We analyze what happens to the means of continued fraction digits of a typical real number in the limit as one moves f (n) steps away from either extreme. We also study the limiting behavior of such means for quadratic irrational α.

(Joint work with Francesco Cellarosi, Doug Hensley and Steven J. Miller)

Criteria for subcritical and supercritical energies in generalized Harper's model

Speaker: 

Laura Shou

Institution: 

Caltech

Time: 

Friday, December 5, 2014 - 2:00pm

Location: 

rh 340p

For discrete Schrödinger operators with potential given by a trigonometric polynomial of cosines (called generalized Harper's model), we use the complexified Lyapunov exponent to prove a criterion for subcritical energies in the spectrum and a criterion for supercritical energies. This work was done through the Caltech SURF program, with mentor Christoph Marx.

Pages

Subscribe to UCI Mathematics RSS