The isomorphism problem for \kappa-dense sets of reals

Speaker: 

Garrett Ervin

Institution: 

UCI

Time: 

Monday, May 19, 2014 - 4:00pm to 5:30pm

Host: 

Location: 

RH 440R

We discuss the history of Baumgartner's result that all \aleph_1-dense sets of reals can be order-isomorphic, as well as related results of Shelah and Abraham. We'll outline a proof, due to Todorcevic, that is simpler than Baumgartner's original argument. Finally, we present some recent results of Justin Moore concerning the problem of making all \aleph_2-dense sets of reals isomorphic.
 

Viscosity Solutions for Forward SPDEs and PPDEs

Speaker: 

Jin Ma

Institution: 

USC

Time: 

Tuesday, May 20, 2014 - 11:00am to 12:00pm

Host: 

Location: 

RH 306

In this talk we introduce a notion of stochastic viscosity solution

for a class of fully nonlinear SPDEs and the corresponding Path-dependent

PDEs (PPDEs). The definition is based on our new accompanying work

on the pathwise stochastic Taylor expansion, using a variation of the path-

derivatives initiated by Dupire. As a consequence this new definition of the

viscosity solution is directly in the pathwise sense, without having to invoke

the stochastic characteristics for the localization. The issues of consistency,

stability, comparison principles, and ultimately the well-posedness of the

stochastic viscosity solutions will be discussed under this new framework.

This is a joint work with Rainer Buckdahn and Jianfeng Zhang.

Magnetohydrodynamic fluids with zero magnetic diffusivity

Speaker: 

Xianpeng Hu

Institution: 

Courant Institute

Time: 

Tuesday, May 20, 2014 - 3:00pm to 4:00pm

Host: 

Location: 

RH306

 

Understanding the incompressible/compressible fluid is a fundamental, but
challenging, project not only in numerical analysis, but also in
theoretical analysis, especially when extra effects, such as the elastic
deformation or the magnetic field, interact with the flow. In this talk,
the incompressible fluid and its associated flow map will be reviewed first.
The main object of this talk devotes to a recent work in understanding
incompressible/compressible magnetohydrodynamic fluids with zero magnetic
diffusivity (which is equivalent to infinite conductivity). This is a
joint work with Fanghua Lin.

Tunneling in graphene: magic angles and their origins. (On a joint work with M. Katsnelson, A. Okunev, I. Schurov, D. Zubov.)

Speaker: 

Victor Kleptsyn

Institution: 

CNRS, Institute of Mathematical Research of Rennes

Time: 

Thursday, May 15, 2014 - 11:00am to 12:00pm

Host: 

Location: 

RH 440R

My talk will be devoted to a joint work with M. Katsnelson, A. Okunev, I. Schurov and D. Zubov.

Graphene is a layer of carbon (forming a hexagonal lattice) of thickness of one or several atoms. One of its remarkable properties is that the behavior of electrons on it is described by the Dirac equation, the same equation that describes the behavior of ultrarelativistic particles. A corollary of this is the Klein tunneling: an electron (or, as it is much more appropriate to say, an wave or quasiparticle) that falls orthogonally on a flat potential barrier on a single-layer graphene, not only has a positive chance of tunneling through it (what is quite natural in quantum mechanics), but passes through it with probability one(!).

Reijnders, Tudorovskiy and Katsnelson, while modeling a transition through an n-p-n junction, have discovered the presence of other, nonzero "magic" angles, under which the falling particle (of given energy) passes through the barrier with probability one.

There are a several interesting problems that arise out of this work. On the one hand, a zero probability of reflection is a codimension two condition (the coefficient before the reflected wave is a complex coefficient that should be equal to zero). Thus, we have a system of two equations on one variable (the incidence angle) that has nonempty set of solutions, what one would not normally expect. And it is interesting to explain their origins.

On the other hand, there is a question that is interesting from the point of view of potential applications: can one invent a potential that "closes well" the transition probabilities (in particular, that has no magic angles)? This question comes from construction of transistors: that is what we should observe for a transistor in the "closed" state.

I will speak about our advances in all these problems. In particular, the tunneling problem on bilayer graphene turns out to be (vaguely) connected to the slow-fast systems on the 2-torus.

Self-genericity axioms VII

Speaker: 

Andres Forero

Institution: 

UCI

Time: 

Monday, May 12, 2014 - 4:00pm to 5:30pm

Host: 

Location: 

RH 440R

We complete the exposition on self-genericity axioms for ideals on P(Z) (Club Catch, Projective Catch and Stationary Catch). We have established some relations with forcing axioms and with the existence of certain regular forcing embeddings and projections, and also point out connections with Precipitousness. We give an rough overview of the method used for proving the existence of models with Woodin cardinals coming from these axioms, using the Core Model Theory. In this talk we finish explaining the mechanism of absorbing extenders in the core model, and lifting iterability from countable models to models of large cardinality.

Alumni Survey

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Slopes of modular forms

Speaker: 

Liang Xiao

Institution: 

UC Irvine

Time: 

Tuesday, May 27, 2014 - 2:00pm

Location: 

RH 340P

I will explain several conjectures and results regarding the slope distribution of Up operator action on the space of modular forms.  Most notably, we prove that the slopes of modular forms with a highly p-divisible characters roughly form unions of arithmetic progressions.  This is a joint work with Daqing Wan and Jun Zhang.

Pages

Subscribe to UCI Mathematics RSS