# Projective Geometry, Complex Hyperbolic Space, and Geometric Transitions.

## Speaker:

## Speaker Link:

## Institution:

## Time:

## Host:

## Location:

The natural analog of Teichmuller theory for hyperbolic manifolds in dimension 3 or greater is trivialized by Mostow Rigidity, so mathematicians have worked to understand more general deformations. Two well studied examples, convex real projective structures and complex hyperbolic structures, have been investigated extensively and provide independently developed deformation theories. Here we will discuss a surprising connection between the these, and construct a one parameter family of geometries deforming complex hyperbolic space into a new geometry built out of real projective space and its dual.