We present several geometric interpretations of a certain family of
solutions of an "integrable" nonlinear pde. This sheds light on a diverse
range of topics, from the classical Painleve equations to the
quantum cohomology of Fano manifolds.
It is known that many simply connected, smooth topological
4-manifolds admit infinitely many exotic smooth structures. The
smaller the Euler characteristic, the harder it is to construct
exotic smooth structure. In this talk, we construct exotic smooth
structures on small 4-manifolds such as CP^2#k(-CP^2) for k = 2, 3,
4, 5 and 3CP^2#l(-CP^2) for l = 4, 5, 6, 7. We will also discuss the
interesting applications to the geography of minimal symplectic
4-manifolds.
Fundamental groups of 3-manifolds are known to satisfy strong
properties, and in recent years there have been several advances in their
study. In this talk I will discuss how some of these properties can be
exploited to give us insight (and results) in the study of 4-manifolds.
The L^2 norm of the Riemannian curvature tensor is a natural intrinsic analogue of the Yang-Mills energy in purely Riemannian geometry. To understand the structure of this functional, it is natural to consider the gradient flow. I will give an overview of the analytic theory behind this flow, and discuss some long time existence results in low dimensions. Finally I will mention some natural conjectures for this flow and their consequences.
In 2001, Donaldson proved that the existence of cscK metrics on a
polarized manifold (X,L) with discrete automorphism group implies the
existence of balanced metrics on L^k for k large enough. We show that the
similar statement holds if one twists the line bundle L with a simple
stable vector bundle E. More precisely we show that if E is a simple
stable bundle over a polarized manifold (X,L), (X,L) admits cscK metric
and have discrete automorphism group, then (PE^*, \O(d) \otimes L^k)
admits a balanced metric for k large enough.
We will discuss the constrained KP hierarchy and
give a geometric interpretation of the Gel'fand-Dikii equatioin as curve flows in R^n. We will also construct B\"{a}cklund transformation and
Hamiltonian structures for these curve flows
Recently, using the desingularization technique, a new family of complete properly embedded self-shrinkers asymptotic to cones in three dimensional Euclidean space has been constructed by Kapouleas-Kleene-Moeller and independently by Nguyen.
In this talk, we present the uniqueness of self-shrinking ends asymptotic to any given cone in general Euclidean space. The feature of our uniqueness result is that we do not require the control on the boundaries of self-shrinking ends or the rate of convergence to cones at infinity. As applications, we show that, there do not exist complete properly embedded self-shrinkers other than hyperplanes having ends asymptotic to rotationally symmetric cones.