Geometrically Convergent Monte Carlo Algorithms for Radiative Transport Problems 

Speaker: 

Professor Jerry Spanier

Institution: 

Beckman Laser Institute, UCI

Time: 

Monday, March 9, 2009 - 4:00pm

Location: 

RH 306

Monte Carlo simulations of the radiative transport equation provide a gold standard of computational 
accuracy for many problems in biomedical optics, but their slow convergence (as dictated by the central 
limit theorem) prevents their routine use. In the past decade, there has been a concerted effort to 
develop adaptively modified Monte Carlo algorithms that converge geometrically to solutions of 
radiative transport equations. Our group has concentrated on algorithms that extend to integral 
equations methods first proposed for matrix equations by Halton in 1962. This was accomplished by 
expanding the solution in suitable basis functions and estimating a finite number of expansion 
coefficients by random variables, based on either correlated sampling or importance sampling, and 
designing  strategies to lower the variance recursively. Geometric convergence has been rigorously 
established for these first generation adaptive algorithms, but their practical utility is degraded by  the 
expansion technique itself. More recently we have developed new adaptive algorithms that overcome 
most of the computations shortcomings of the earlier algorithms, and we have demonstrated the 
geometric convergence of these second generation algorithms.  We will outline the major ideas 
involved and illustrate their advantages over conventional Monte Carlo methods. These algorithms will 
play a significant role in providing real\time computational support for biophotonics applications at the 
Beckman Laser Institute and Medical Clinic. 

Projections on L-one spaces

Speaker: 

Professor Bernard Russo

Institution: 

UCI

Time: 

Tuesday, January 27, 2009 - 3:00pm

Location: 

RH 306

Abstract: I introduce and discuss the notions of projective stability and
projective rigidity in Banach spaces, focusing on the space of integrable
functions and its noncommutative and nonassociative analogs.

Ricci flow on quasiprojective varieties

Speaker: 

Professor John Lott

Institution: 

UC Berkeley

Time: 

Tuesday, May 25, 2010 - 3:00pm

Location: 

AP&M 6402, UCSD

Singularities occur in Ricci flow because of curvature blowup. For dimensional reasons, when approaching a singularity, one expects the curvature to blow up like the inverse of the time to the singularity. If this does not happen, the singularity is said to be type II. The first example of a type II singularity, studied by Daskalopoulos-Del Pino-Hamilton-Sesum, occurs on a noncompact surface which is the result of capping off a hyperbolic cusp. The analysis in the surface case uses isothermal coordinates. It is not immediately clear whether it extends to higher dimensions. We look at the Ricci flow on finite-volume metrics that live on the complement of a divisor in a compact Khler manifold. We compute the blowup time in terms of cohomological data and give sufficient conditions for a type II singularity to emerge. This is joint work with Zhou Zhang.

Quantum dynamics and decomposition of spectral measures with respect to Hausdorff measures

Speaker: 

Christoph Marx

Time: 

Thursday, December 4, 2008 - 2:00pm

Location: 

RH 306

In this expository talk we relate the spectral properties of a discrete
Schr"odinger operator on a d-dimentional lattice to its dynamical
features. Dynamical quantities of interest include Fourier transforms of
spectral measures, time averaged moments of the position operator, as well
as time-averaged observables for a compact operator. The RAGE theorem in
its various formulations predicts the asymptotic behaviour of these
quantities for any state in the continuous subspace of the Hilbert space:
observables for a compact operator decay to zero, whereas the moments of
the position operator asymptotically diverge. In order to quantify this
decay/divergence, we present a decomposition of the spectral measure with
respect to Hausdorff measures of dimension $\alpha \in [0,1]$. This
decomposition due to Rogers and Taylor generalizes the classical
decomposition of the spectral measure w.r.t. Lebesgue measure into pure
point and continous component. Whereas for $\alpha = 1$ it recasts the
classical result, for $\alpha < 1$ one obtains a decomposition different
to the classical one. For each Hausdorff dimension, the spectral measure
then splits in an $\alpha$-continuous and an $\alpha$-singular component.
$\alpha$-continuous measures are shown to be limits of uniformly $\alpha$
H"older continuous (U$\alpha$H) measures w.r.t. to a suitable topology.
For U$\alpha$H spectral measures lower and upper bounds for various
dynamical quantities are available.

references:
Y. Last, Quantum dynamics and decompositions of singular continuous
spectra, J. Funct. Anal 142, 406-445 (1996).
W. Kirsch: An invitation to random Schr"odinger operators,
arXiv:0709.3707v1[math-ph].
G. Teschl: Mathematical Methods in Quantum mechanics with application to
Schroedinger operators, Graduate Studies in Mathematics, Amer. Math. Soc.,
Providence, 2008. (to appear).

Hopf Bifurcation in Age Structured Models with Application to Influenza A Drift

Speaker: 

Professor Shigui Ruan

Institution: 

The University of Miami

Time: 

Tuesday, February 17, 2009 - 4:00pm

Location: 

RH 306

Understanding the seasonal/periodic reoccurrence of influenza will be
very helpful in designing successful vaccine programs and introducing
public health interventions. However, the reasons for seasonal/periodic
influenza epidemics are still not clear even though various explanations
have been proposed. In this talk, we present an age-structured type evolutionary epidemiological model of influenza A drift, in which the susceptible class is continually replenished because the pathogen changes genetically and immunologically from one epidemic to the next, causing previously immune hosts to become susceptible. Applying our recent established center manifold theory for semilinear equations with non-dense domain, we show that Hopf bifurcation occurs in the model. This
demonstrates that the age-structured type evolutionary epidemiological model of influenza A drift has an intrinsic tendency to oscillate due to the evolutionary and/or immunological changes of the influenza viruses.
(based on joint work with Pierre Magal).

Pages

Subscribe to UCI Mathematics RSS