Abstract: In this talk, we consider the spectral gaps of quasi-periodic Schrodinger operators with Liouville frequencies. By establishing quantitative reducibility of the associated Schrodinger cocycle, we show that the size of the spectral gaps decays exponentially. This is a joint work with Wencai Liu.
How should you read your TA evaluations? How do I read them? I'd like to talk about this and I'd also like to review the first half of the seminar, talking about questions like "What was the main point of the Week ? meeting?".
We report on the recent rigorous and general construction of the deformation-obstruction theories and virtual fundamental classes of nested (flag) Hilbert scheme of one dimensional subschemes of a smooth projective algebraic surface. The nested Hilbert scheme is a moduli space, which parametrizes a nested chain of configurations of curves and points in the ambient surface. This construction will provide one with a general framework to compute a large class of already known invariants, such as Poincare invariants of Okonek et al, or the reduced local invariants of Kool and Thomas in the context of their local surface theory. We show how to compute the generating series of deformation invariants associated to the nested Hilbert schemes, and via exploiting the properties of vertex operators, prove that in some cases they are given by modular forms. We finally establish a connection between the Vafa-Witten invariants of local-surface threefolds (recently analyzed also by Tanaka and Thomas) and such nested Hilbert schemes. This construction (via applying Mochizuki’s wall- crossing techniques) enables one to obtain a relation between the generating series of Seiberg-Witten invariants of the surface, the Vafa-Witten invariants, and some modular forms. This is joint work with Amin Gholampour and Shing-Tung Yau appeared in arXiv:1701.08902 and arXiv:1701.08899.
Suppose f is an n-variate polynomial with integer coefficients and degree d. Many natural computational problems involving the real zero set Z of f are algorithmically difficult. For instance, no known algorithm for computing the number of connected components of Z has complexity polynomial in n+d. Furthermore, no known general algorithm for deciding whether f has root over the p-adic has sub-exponential complexity. So it is worthwhile to seek families of polynomials where these questions are tractable.
Assuming f has n+2 monomial terms, and its exponent vectors do not all lie on an affine hyperplane, we prove that the isotopy type of Z can be determined in time polynomial in log d, for any fixed n. (This family of polynomials --- polynomials supported on circuits ---is highly non-trivial, since it already includes Weierstrass normal forms and several important examples from semi-definite programming.) We also show that a 1998 refinement of the abc-Conjecture (by Baker) implies that our algorithm is polynomial in n as well. Furthermore, the original abc-Conjecture implies that p-adic rational roots for f can be detected in the complexity class NP.
These results were obtained in collaboration with Kaitlyn Phillipson and Daqing Wan.
A fundamental observation in Katz-Sarnak's study of the zero spacing of L-functions is that Frobenius conjugacy classes in suitable families of varieties over finite fields approximate infinite random matrix statistics. For example, the normalized Frobenius conjugacy classes of smooth plane curves of degree d over F_q approach the Gaussian symplectic ensemble as we take first q to infinity, then d to infinity. In this talk, we explain a sideways version of this result where the limits in d and q are exchanged, and give a Hodge theoretic analog in characteristic zero.
A basic problem in the study of fiber bundles is to compute the ring H*(BDiff(M)) of characteristic classes of bundles with fiber a smooth manifold M. When M is a surface, this problem has ties to algebraic topology, geometric group theory, and algebraic geometry. Currently, we know only a very small percentage of the total cohomology. In this talk I will explain some of what is known and discuss some new characteristic classes (in the case dim M >>0) that come from the unstable cohomology of arithmetic groups.
Mathematisches Institut, Friedrich Schiller Universität Jena
Time:
Friday, November 3, 2017 - 2:00pm to 2:50pm
Location:
RH340P
In this talk, I will explain the notion of a simple Toeplitz sequence (in the sense of Liu-Qu) and of the subshift associated to it. A description of the elements in the subshift will be given and some basic properties of the subshift will be discussed.
In the first half of the talk, we introduce a new quasi-local mass with interesting properties along null flows off of a 2-sphere in spacetime or, equivalently, foliations of a null cone. We also show how certain, fairly generic, convexity assumptions on the null cone allows for a proof of the Penrose Conjecture. On the Black Hole Horizon, we find that the convexity assumptions become sharp; therefore, the second half of the talk will explore the existence of a class of Black Hole Horizons admitting such convexity. From this, building upon the work of S. Alexakis, we will show that the Schwarzschild Null Cone--the case of equality for the Penrose Conjecture--is also critical in light of recent work on the perturbation of stable, weakly isolated Horizons.
Raphael Zentner (University of Regensburg): Irreducible SL(2,C)-representations of integer homology 3-spheres
We prove that the splicing of any two non-trivial knots in the 3-sphere admits an irreducible SU(2)-representation of its fundamental group. This uses instanton gauge theory, and in particular a non-vanishing result of Kronheimer-Mrowka and some new results that we establish for holonomy perturbations of the ASD equation. Using a result of Boileau, Rubinstein and Wang (which builds on the geometrization theorem of 3-manifolds), it follows that the fundamental group of any integer homology 3-sphere different from the 3-sphere admits irreducible representations of its fundamental group in SL(2,C).