In this talk I will describe a singular boundary value problem for Einstein metrics. This problem arises in the Fefferman-Graham theory of conformal invariants, and in the AdS/CFT correspondence. After giving a brief overview of some important results and examples, I will present a recent construction of boundary data which cannot admit a solution. Finally, I will introduce a more general index-theoretic invariant which gives an obstruction to existence in the case of spin manifolds. This is joint work with Q. Han and S. Stolz.
We discuss rigidity results of volume-preserving maps between Hermitian symmetric spaces, based on the work of Mok-Ng and my recent joint work with Fang and Huang. Moreover, we make connections with rigidity results in CR geometry.
A key challenge in Riemannian geometry is to find ``best" metrics on compact manifolds. To construct such metrics explicitly one is interested to know if approximation sequences contain subsequences that converge in some sense to a limit manifold.
In this talk we will present convergence results of sequences of closed Riemannian
4-manifolds with almost vanishing L2-norm of a curvature tensor and a non-collapsing bound on the volume of small balls. For instance we consider a sequence of closed Riemannian 4-manifolds,
whose L2-norm of the Riemannian curvature tensor is uniformly bounded from
above, and whose L2-norm of the traceless Ricci-tensor tends to zero. Here,
under the assumption of a uniform non-collapsing bound, which is very close
to the euclidean situation, and a uniform diameter bound, we show that there
exists a subsequence which converges in the Gromov-Hausdor sense to an
Einstein manifold.
To prove these results, we use Jeffrey Streets' L2-curvature
ow. In particular, we use his ``tubular averaging technique" in order to prove fine distance
estimates of this flow which only depend on significant geometric bounds.
The finite Toda lattice was proposed originally as a model for finitely many particles in a one-dimensional crystal. Now 50 years since its introduction, it has become a canonical model in integrable systems. In this talk, we will consider the long time limit of the finite Toda lattice. The main results are detailed asymptotic formulas for the positions and velocities of the particles, which improve upon classical results (Moser, 1975) by giving precise estimates of the associated error. Moreover, our Riemann-Hilbert techniques allow one, in principle, to compute the complete asymptotic expansions for the various dynamical quantities. This is joint work with Ken McLaughlin (Colorado State) and Bob Jenkins (University of Arizona).
In this talk, I will discuss the strengths and shortcomings of the Fourier transform as a tool to investigate the global analysis of PDEs. As part of this discussion, I will give various applications to problems in several complex variables and introduce a FBI transform as a more broadly applicable tool.
Every group admits at least one action by isometries on a hyperbolic metric space, and certain classes of groups admit many different actions on different hyperbolic metric spaces (in fact, often uncountably many). One such class of groups is the class of so-called acylindrically hyperbolic groups, which contains many interesting groups, such as mapping class groups, Out(F_n), and right-angled Artin and Coxeter groups, among many others. In this talk, I will describe how to put a partial order on the set of actions of a given group on hyperbolic spaces which, in some sense, measures how much information about the group the action provides. This partial order defines a "poset of actions" of the given group. I will then define the class of acylindrically hyperbolic groups and give some structural properties of the resulting poset of actions for such groups. In particular, I will discuss for which (classes of) groups the poset contains a largest element.