Parameter Sensitivity Analysis for Spatially-Extended Reaction Networks

Speaker: 

Chris Lester

Institution: 

University of Oxford

Time: 

Monday, November 14, 2016 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

Reaction-diffusion models are widely used to study spatially-extended chemical reaction systems. The input parameters on which these models are predicated are experimentally derived. In order to understand how the dynamics of a reaction-diffusion model are affected by changes in input parameters, efficient methods for computing parametric sensitivities are required. In this talk, we focus on compartment-based stochastic models of spatially-extended chemical reaction systems, which partition the computational domain into voxels. Parametric sensitivities are often calculated using Monte Carlo techniques that are typically computationally expensive; however, variance reduction techniques can decrease the number of Monte Carlo simulations required. By exploiting the characteristic dynamics of spatially-extended reaction networks, we are able to adapt existing finite difference schemes to robustly estimate parametric sensitivities in a spatially-extended network. Our methods are tested for functionality and reliability in a range of different scenarios.

Positive Lyapunov exponents for randomly perturbed two-dimensional maps

Speaker: 

Jinxin Xue

Institution: 

University of Chicago

Time: 

Tuesday, October 25, 2016 - 3:00pm to 4:00pm

Host: 

Location: 

RH306

 Lyapunov exponents measure the rate of exponential expansion or contraction in a dynamical system. For a given nonlinear dynamical systems, it turns out to be a very hard problem to prove the nonvanishing of Lyapunov exponents or even to estimate them quantitatively. For a given prototypical two-dimensional map, we introduce a small random perturbation to the map and give with relative ease the quantitative estimate of the Lyapunov exponents versus the size of the randomness. This is a joint work with A. Blumenthal and L.-S. Young. 

Volume preserving holomorphic maps between hermitian symmetic spaces of compact type

Speaker: 

Hanlong Fang

Institution: 

Rutgers University

Time: 

Tuesday, November 1, 2016 - 3:03pm to 3:50pm

Host: 

Location: 

RH 306

We discuss a new rigidity property for local volume preserving maps between hermitian symmetic spaces of compact type along the lines of recent work of Clozel-Ullmo and Mok-Ng.  This is a joint work with Prof. X.Huang and Dr. X.Ming.

On Weyl's embedding problem in Riemannian manifolds

Speaker: 

Siyuan Lu

Institution: 

McGill University

Time: 

Tuesday, October 18, 2016 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

We consider a priori estimates of Weyl’s embedding problem of (S^2,g) in general 3-dimensional Riemannian manifold (N^3,\bar g). We establish the mean curvature estimate under natural geometric assumption. Together with a recent work by Li-Wang, we obtain an isometric embedding of (S2,g) in Riemannian manifold. In addition, we reprove Weyl’s isometric embedding theorem in space form under the condition that g \in C^2 with D^2g Dini continuous. 

Two dimensional water waves in holomorphic coordinates

Speaker: 

Mihaela Ifrim

Institution: 

UC Berkeley

Time: 

Thursday, October 27, 2016 - 4:00pm

Host: 

Location: 

440R

We consider this problem expressed in position-velocity potential holomorphic coordinates. We will explain the set up of the problem(s) and try to present the advantages of choosing such a framework.  Viewing this problem(s) as a quasilinear dispersive equation, we develop new methods which will be used to prove enhanced lifespan of solutions and also global solutions for small and localized data. The talk will try to be self contained.

Vortices in strain

Speaker: 

Stefan Llewellyn Smith

Institution: 

UCSD

Time: 

Monday, April 3, 2017 - 4:00pm to 5:00pm

Location: 

RH 306

A vortex in a straining field is a canonical situation describing vortices in an irrotational flow. Exact solutions to this problem have been found in the form of vortex patches and hollow vortices, both of which can be viewed as desingularizations of point vortices. After a review of the history of point vortices, we discuss hollow vortices, which are steady vortex sheets. We then focus on the case of vortices in strain and examine hollow vortices and vortex patches, describing the bifurcation structure of the latter. Finally we consider Sadovskii vortices, which contain both interior vorticity and a vortex sheet on the boundary, and sketch the relations between the different solutions.

Increased Regularity for Hamiltonian Stationary submanifolds

Speaker: 

Micah Warren

Institution: 

University of Oregon

Time: 

Tuesday, October 11, 2016 - 4:00pm

Host: 

Location: 

RH306

A Hamiltonian Stationary submanifold of complex space is a Lagrangian manifold whose volume is stationary under Hamiltonian variations.  We consider gradient graphs $(x,Du(x))$ for a function $u$.    For a smooth $u$, the Euler-Lagrange equation can be expressed as a fourth order nonlinear equation in $u$ that can be locally linearized (using a change of tangent plane) to the bi-Laplace.  The volume can be defined for lower regularity, however, and computing the Euler-Lagrange equation with less assumed regularity gives a "double divergence" equation of second order quantities.   We show several results.  First, there is a $c_n$ so that if the Hessian $D^2u$ is $c_n$-close to a continuous matrix-valued function, then the potential must be smooth.  Previously, Schoen and Wolfson showed that when the potential was $C^{2,\alpha}$, then the potential $u$ must be smooth.    We are also able to show full regularity when the Hessian is bounded within certain ranges.   This allows us to rule out conical solutions with mild singularities.

This is joint work with Jingyi Chen.

Traveling Fronts of Reaction-Diffusion Equations with Ignition Media and Levy Operators

Speaker: 

Tau Shean Lim

Institution: 

Univ Wisconsin at Madison

Time: 

Monday, September 26, 2016 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

We discuss traveling front solutions u(t,x) = U(x-ct) of reaction-diffusion equations u_t = Lu + f(u) with ignition media f and diffusion operators L generated by symmetric Levy processes X_t. Existence and uniqueness of fronts are well-known in the case of classical diffusion (i.e., Lu = Laplacian(u)) and non-local diffusion (Lu = J*u - u). Our work extends these results to general Levy operators. In particular, we show that a strong diffusivity in the underlying process (in the sense that the first moment of X_1 is infinite) prevents formation of fronts, while a weak diffusivity gives rise to a unique (up to translation) front U and speed c>0.

UCI MATH CIRCLE - Volunteers sign-up

Most weeks, the UCI Math Circle will offer two parallel sessions (LEVEL 1 and LEVEL 2). Both sessions will carry out interesting mathematical investigations, and will engage the students in mathematical discovery and problem solving, but the difficulty level of the problems and the content presented will be higher in the LEVEL 2 math circle.
You can participate as a leader or assistants. Due to limited funds, this year we will only be able to pay graduate students serving as leaders ($75 per session). Please select your availability as a leader or an assistant below.
If we can get enough volunteers, we will open more slots in Spring.
If we can get enough volunteers, we will open more slots in Spring.
Profiles will be displayed on the PEOPLE page of the website (http://www.math.uci.edu/~mathcircle/MCpeople.html)
As an active member of the UCI Math Circle team, you will be profiled on the circle website. You can find examples at this link: (http://www.math.uci.edu/~mathcircle/MCpeople.html). Please write your profile in the text area above.
A picture will be included with your profile on the Math Circle website
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Laplacian on a noncompact complete Riemannian manifold with dense eigenvalues embedded in the essential spectrum

Speaker: 

W. Liu

Institution: 

UCI

Time: 

Thursday, August 18, 2016 - 2:00pm

Location: 

RH 340P

Kumura showed that there are no eigenvalues embedded in the essential
spectrum of the Laplacian on $n$-dimensional noncompact
complete Riemannian manifold $(M_n, g)$, if the radial curvature $K_{\rm
rad}+1=o(r^{-1})$ as $r$ goes to infinity.

Given any finite/countable set of positive energies $\{\lambda_n\}$, we
can
construct a Riemannian manifold with the decay order
$K_{\rm rad}+1=O(r^{-1})$/$K_{\rm rad}+1=\frac{C(r)}{r}$, where $C(r)\geq
0$ and $C(r) $ goes to infinity arbitrarily slowly, such that the
eigenvalues $\{\frac{(n-1)^2}{4}+\lambda_n\}$ are embedded in the
essential
spectrum $\sigma_{{\rm ess}}(-\Delta_g)=\left[\frac{(n-1)^2}{4},\infty
\right)$.

Pages

Subscribe to UCI Mathematics RSS