Towards the global bifurcation theory on the plane

Speaker: 

Yulij Ilyashenko

Institution: 

Cornell University, Higher School of Economics (Russia)

Time: 

Tuesday, October 11, 2016 - 3:00pm to 4:00pm

Host: 

Location: 

RH 306

The talk provides a new perspective of the global bifurcation theory on the plane. Theory of planar bifurcations consists of three parts: local, nonlocal and global ones. It is now clear that the latter one is yet to be created.

Local bifurcation theory (in what follows we will talk about the plane only) is related to  transfigurations of phase portraits of differential equations near their singular points. This theory is almost completed, though recently new open problems occurred. Nonlocal theory is related to bifurcations of separatrix polygons (polycycles). Though in the last 30 years there were obtained many new results, this theory is far from being completed.

Recently it was discovered that nonlocal theory contains another substantial part: a global theory. New phenomena are related with appearance of the so called sparkling saddle connections. The aim of the talk is to give an outline of the new theory and discuss numerous open problems. The main new results are: existence of an open set of structurally unstable families of planar vector fields, and of families having functional invariants (joint results with Kudryashov and Schurov). Thirty years ago Arnold stated six conjectures that outlined the future development of the global bifurcation theory in the plane. All these conjectures are now disproved. Though the theory develops in quite a different direction, this development is motivated by the Arnold's conjectures.

How Mathematical Models Can Provide Insight into Stopping Epidemics

Speaker: 

James Hyman

Institution: 

Tulane University

Time: 

Thursday, December 1, 2016 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

Public health workers are reaching out to mathematical scientists to use disease models to understand, and mitigate, the spread of emerging diseases. Mathematical and computational scientists are needed to create new tools that can anticipate the spread of new diseases and evaluate the effectiveness of different approaches for bringing epidemics under control. That is, these models can provide an opportunity for the mathematical scientists to collaborate with the public health community to improve the health of our world and save lives. The talk will provide an overview, for general audiences, of how these collaborations have evolved over the past decade. I will describe some recent advances in mathematical models that are having an impact in guiding pubic health policy, and describe what new advances are needed to create the next generation of models. Throughout the talk, I will share some of my personal experiences in used these models for controlling the spread of Ebola, HIV/AIDS, Zika, chikungunya, and the novel H1N1 (swine) flu. The talk is for a general audience.

 

The PDEs of mathematical finance

Speaker: 

Jerry Goldstein

Institution: 

University of Memphis

Time: 

Thursday, April 28, 2016 - 4:00pm

Location: 

RH 306

We will discuss three one space dimensional time dependent linear parabolic equations: the heat equation, the Black-Scholes equation (describing stock options) and the Cox-Ingersoll-Ross equation (describing bond markets).  New results will involve representation of the solution semigroups, chaotic properties of the semigroups, and a new kind of Feynman-Kac type representation of the solution for the CIR equation.

Random matrix type fluctuations: how to see them in the Ising model?

Speaker: 

S. Shlosman

Institution: 

CNRS, Marseille

Time: 

Thursday, March 10, 2016 - 4:00pm

Location: 

RH 306

I will talk about the Ising model -- the drosophila of the rigorous statistical physics. It turns out that some of the new phenomena which appear in modern mathematical physics can still be observed in the Ising model as well. 
One example which I will focus on is the size of typical fluctuations of the extended systems. If the size of the system is N, then the usual (Gaussian) fluctuations are of the order of N^{1/2}. Bit in the random matrix theory one sees the fluctuations of the order N^{1/3}. I will explain that one can see them already in the Ising model -- one just needs to know where to look.

Journey to the Center of the Earth

Speaker: 

Gunther Uhlmann

Institution: 

University of Washington

Time: 

Thursday, January 28, 2016 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

     We will consider the inverse problem of determining the sound speed or index of refraction of a medium by measuring the travel times of waves going through the medium. This problem arises in global seismology in an attempt to determine the inner structure of the Earth by measuring travel times of earthquakes. It has also several applications in optics and medical imaging among others.
     The problem can be recast as a geometric problem: Can one determine a Riemannian metric of a Riemannian manifold with boundary by measuring the distance function between boundary points? This is the boundary rigidity problem. We will also consider the problem of determining the metric from the scattering relation, the so-called lens rigidity problem. The linearization of these problems involve the integration of a tensor along geodesics, similar to the X-ray transform.
     We will also describe some recent results, join with Plamen Stefanov and Andras Vasy, on the partial data case, where you are making measurements on a subset of the boundary. No previous knowledge of Riemannian geometry will be assumed. 

Birkhoff Conjecture and ''spectral rigidity'' of planar convex domains

Speaker: 

Vadim Kaloshin

Institution: 

Maryland University

Time: 

Thursday, January 21, 2016 - 4:00pm to 5:00pm

Host: 

Location: 

Rowland Hall 306

The classical Birkhoff conjecture states that the only integrable convex planar domains are circles and ellipses. In a joint work with A. Avila and J. De Simoi we show that this conjecture is true for perturbations of ellipses of small eccentricity. It turns out that the method of proof gives an insight into deformational spectral rigidity of planar axis symmetric domains and a partial answer to a question of P. Sarnak. The latter is a joint work with J. De Simoi and Q. Wei.

Gluing constructions in differential geometry

Speaker: 

Nicolaos Kapouleas

Institution: 

Brown University

Time: 

Thursday, October 22, 2015 - 4:00pm to 5:00pm

Host: 

Location: 

Rowland Hall 306

Abstract:

I will discuss various geometric gluing constructions. First I will discuss constructions for Constant Mean Curvature hypersurfaces in Euclidean spaces including my earlier work for two-surfaces in three-space which settled the Hopf conjecture for surfaces of genus two and higher, and recent generalizations in collaboration with Christine Breiner in all dimensions. I will then briefly mention gluing constructions in collaboration with Mark Haskins for special Lagrangian cones in Cn. A large part of my talk will concentrate on doubling and desingularization constructions for minimal surfaces and on applications on closed minimal surfaces in the round spheres, free boundary minimal surfaces in the unit ball, and self-shrinkers for the Mean Curvature flow. Finally I will discuss my collaboration with Simon Brendle on constructions for Einstein metrics on four-manifolds and related geometric objects.

Integral equation modeling for nonlocal diffusion and mechanics

Speaker: 

Max Gunzburger

Institution: 

Florida State University

Time: 

Thursday, December 3, 2015 - 4:00pm to 5:00pm

Host: 

Location: 

Rowland Hall 306

We use the canonical examples of fractional Laplacian and peridynamics equations to discuss their use as models for nonlocal diffusion and mechanics, respectively, via integral equations with singular kernels. We then proceed to discuss theories for the analysis and numerical analysis of the models considered, relying on a nonlocal vector calculus to define weak formulations in function space settings. In particular, we discuss the recently developed asymptotically compatible families of discretization schemes. Brief forays into examples and extensions are made, including obstacle problems and wave problems.

The Mathematical Connections of Juggling

Speaker: 

Yuki Takahashi

Institution: 

UC Irvine

Time: 

Thursday, November 12, 2015 - 3:00pm to 4:00pm

Location: 

Natural Science II 1201

In this co-sponsored UCI Illuminations and Juggle Buddies event, we will talk about the math theories associated with the art of juggling, a form of prop manipulation. This theory involves the use of Siteswap notation.

Siteswap is a juggling notation used to describe possible juggling patterns. For example, the most basic three-ball trick called a cascade can be written as "3" in this notation. Another juggling trick called a shower, where balles are thrown in a circular motion, is denoted by "51".

In this talk we start with the definition of Siteswap, and explain the beautiful mathematical theory beind it.

No background knowledge is required.

This event is free an open to the public. Free pizza will be served.

Pages

Subscribe to RSS - Colloquium