The Sphere Covering Inequality and Its Applications

Speaker: 

Amir Moradifam

Institution: 

UC Riverside

Time: 

Tuesday, May 30, 2017 - 3:00pm

Host: 

Location: 

RH 306

We show that the total area of two distinct Gaussian curvature 1 surfaces with the same conformal factor on the boundary, which are also conformal to the Euclidean unit disk, must be at least 4π. In other words, the areas of these surfaces must cover the whole unit sphere after a proper rearrangement. We refer to this lower bound of total areas as the Sphere Covering Inequality. This inequality and it's generalizations are applied to a number of open problems related to Moser-Trudinger type inequalities, mean field equations and Onsager vortices, etc, and yield optimal results. In particular we confirm the best constant of a Moser-Truidinger type inequality conjectured by A. Chang and P. Yang in 1987. This is a joint work Changfeng Gui.

 

L^\infty-variation problems and the well-posedness of the viscosity solutions for a class of Aronsson's equations

Speaker: 

Qianyun Miao

Institution: 

Beihang University and UCI

Time: 

Tuesday, April 18, 2017 - 3:00pm

Location: 

RH306

For a bounded domain, we consider the L^\infty-functional involving a nonnegative Hamilton function. Under the continuous Dirichlet boundary condition and some assumptions of Hamiltonian H, the uniqueness of absolute minimizers for Hamiltonian H is established. This extendes the uniqueness theorem to a larger class of Hamiltonian $H(x,p)$ with $x$-dependence. As a corollary, we confirm an open question on the uniqueness of absolute minimizers posed by Jensen-Wang-Yu. Our proofs rely on geometric structure of the action function induced by Hamiltonian H(x,p), and the identification of the absolute subminimality with convexity of the associated Hamilton-Jacobi flow.  

Full-dispersion shallow water models and the Benjamin-Feir instability

Speaker: 

Vera Mikyoung Hur

Institution: 

UIUC

Time: 

Tuesday, June 6, 2017 - 3:00pm

Host: 

Location: 

RH306

 In the 1960s, Benjamin and Feir, and Whitham, discovered that a Stokes wave would be unstable to long wavelength perturbations, provided that (the carrier wave number) x (the undisturbed water depth) > 1.363.... In the 1990s, Bridges and Mielke studied the corresponding spectral instability in a rigorous manner. But it leaves some important issues open, such as the spectrum away from the origin. The governing equations of the water wave problem are complicated. One may resort to simpler approximate models to gain insights.

I will begin by Whitham's shallow water equation and the modulational instability index for small amplitude and periodic traveling waves, the effects of surface tension and vorticity. I will then discuss higher order corrections, extension to bidirectional propagation and two-dimensional surfaces. This is partly based on joint works with Jared Bronski (Illinois), Mat Johnson (Kansas), and Ashish Pandey (Illinois).

Pages

Subscribe to RSS - Nonlinear PDEs