Speaker: 

Professor Robert Kohn

Institution: 

Courant Institute of Mathematical Sciences New York University

Time: 

Monday, January 26, 2009 - 2:00pm

Location: 

RH 306

We say a region of space is "cloaked" with respect to electromagnetic measurements if its contents -- and even the existence of the cloak -- are inaccessible to such measurements. One recent proposal for such cloaking takes advantage of the coordinate-invariance of Maxwell's equations. As usually presented, this scheme uses a singular change of variables. That makes the mathematical analysis subtle, and the practical implementation difficult. This talk examines the correctness and robustness of the change-of-variable-based scheme, for scalar waves modelled by Helmholtz's equation, drawing on joint work with Onofrei, Shen, Vogelius, and Weinstein. The central idea is to use a less-singular change of variables. The quality of the resulting "approximate cloak" can be assessed by studying the detectability of a small inclusion in an otherwise uniform medium. We show that a small inclusion can be made nearly undetectable (regardless of its contents) by surrounding it with a suitable lossy layer.