Speaker: 

Maximilian Pechmann

Institution: 

University of Tennessee, Knoxville

Time: 

Thursday, March 11, 2021 - 10:00am to 11:00am

We study Bose--Einstein condensation (BEC) in one-dimensional noninteracting Bose gases in Poisson random potentials on $\mathbb R$ with single-site potentials that are nonnegative, compactly supported, and bounded measurable functions in the grand-canonical ensemble at positive temperatures and in the thermodynamic limit. For particle densities larger than a critical one, we prove the following: With arbitrarily high probability when choosing the fixed strength of the random potential sufficiently large, BEC where only the ground state is macroscopically occupied occurs. If the strength of the Poisson random potential converges to infinity in a certain sense but arbitrarily slowly, then this kind of BEC occurs in probability and in the $r$th mean, $r \ge 1$. Furthermore, in Poisson random potentials of any fixed strength an arbitrarily high probability for type-I g-BEC is also obtained by allowing sufficiently many one-particle states to be macroscopically occupied.